This paper introduces a navigation system based on combined global positioning system (GPS) and laser-scanner measurements for outdoor ground vehicles. Using carrier-phase differential GPS, centimeter-level positioning is achievable when cycle ambiguities are resolved. However, GPS signals are easily attenuated or blocked, so their use is generally restricted to open-sky areas. In response, in this work we augment GPS with two-dimensional laser-scanner measurements. The latter is available when GPS is not and further enables obstacle detection. The two sensors are integrated in the range domain for optimal navigation performance. Nonlinear laser observations and time-correlated code and carrier-phase GPS signals are processed in a unified and compact measurement-differencing extended Kalman filter. The resulting algorithm performs real-time carrier-phase cycle ambiguity estimation and provides absolute vehicle positioning throughout GPS outages, without a priori knowledge of the surrounding landmark locations. Covariance analysis, Monte Carlo simulations, and experimental testing in the streets of Chicago demonstrate that the performance of the range-domain integrated system far exceeds that of a simpler position-domain implementation, in that it not only achieves meter-level precision over extended GPS-obstructed areas, but also improves the robustness of laser-based simultaneous localization and mapping.

1.
O’Connor
,
M.
, 1997, “
Carrier-Phase Differential GPS for Automatic Control of Land Vehicles
,” Ph.D. thesis, Stanford University, Stanford.
2.
Bell
,
T.
, 1999, “
Precision Robotic Control of Agricultural Vehicles on Realistic Farm Trajectories
,” Ph.D. thesis, Stanford University, Stanford.
3.
Opshaug
,
G.
, and
Enge
,
P.
, 2000, “
Robotic Snow Cat
,”
Proceedings of ION GPS 2000
, Salt Lake City, UT, pp.
1016
1023
.
4.
Hirokawa
,
R.
,
Nakakuki
,
K.
,
Sato
,
K.
, and
Ishihara
,
R.
, 2004, “
Threading the Maze, GPS/INS, Landmark Sensing, and Obstacle Avoidance
,”
GPS World
1048-5104,
15
(
11
), pp.
20
26
.
5.
Farrell
,
J. A.
,
Tan
,
H. -S.
, and
Yang
,
Y.
, 2003, “
Carrier Phase GPS-Aided INS-Based Vehicle Lateral Control
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
125
, pp.
339
353
.
6.
Misra
,
P.
, and
Enge
,
P.
, 2001,
Global Positioning System: Signals, Measurements, and Performance
,
Ganga-Jamuna
,
Lincoln, MA
, Chap. 6, pp.
209
250
.
7.
Greenspan
,
R.
, 1996,
The Global Positioning System: Theory and Applications
,
B. W.
Parkinson
,
J. J.
Spilker
, Jr.
,
P.
Axelrad
and
P.
Enge
, eds.,
AIAA
,
Washington, DC
, Chap. 7, pp.
187
218
.
8.
Leonard
,
J.
, and
Durrant-Whyte
,
H.
, 1992,
Directed Sonar Sensing for Mobile Robot Navigation
,
Kluwer
,
Cambridge, MA
, Chap. 5, pp.
129
138
.
9.
Hatch
,
R.
, and
Euler
,
H. J.
, 1994, “
Comparison of Several AROF Techniques
,”
Proceedings of the ION GPS-94
, Salt Lake City, UT, pp.
363
370
.
10.
Lawrence
,
D.
, 1996, “
Aircraft Landing Using GPS: Development and Evaluation of a Real Time System for Kinematic Position Using the Global Positioning System
,” Ph.D. thesis, Stanford University, Stanford, CA.
11.
Tena Ruiz
,
I.
,
Petillot
,
Y.
,
Lane
,
D. M.
, and
Salson
,
C.
, 2001, “
Feature Extraction and Data Association for AUV Concurrent Mapping and Localisation
,”
Proceedings of the IEEE-ICRA
, Vol.
3
, pp.
2785
2790
.
12.
Thrun
,
S.
, 2003,
Exploring Artificial Intelligence in the New Millennium
,
Morgan Kaufmann
,
San Francisco, CA
, Chap. 1, pp.
1
35
.
13.
Ye
,
C.
, and
Borenstein
,
J.
, 2002, “
Characterization of a 2-D Laser Scanner for Mobile Robot Obstacle Negotiation
,”
Proceedings of the IEEE-ICRA
, pp.
2512
2418
.
14.
Madhavan
,
R.
,
Durrant-Whyte
,
H.
, and
Dissanayake
,
G.
, 2002, “
Natural Landmark-Based Autonomous Navigation Using Curvature Scale Space
,”
Proceedings of the IEEE-ICRA
, Vol.
4
, pp.
3936
3941
.
15.
Tang
,
F.
,
Adams
,
M.
,
Ibanez-Guzman
,
J.
, and
Wijesoma
,
W.
, 2004, “
Pose Invariant, Robust Feature extraction From Range Data With a Modified Scale Space Approach
,”
Proceedings of the IEEE-ICRA
, Vol.
3
, pp.
3173
3179
.
16.
Bar-Shalom
,
Y.
, and
Fortmann
,
T. E.
, 1988, “
Tracking and Data Association
,”
Mathematics in Science and Engineering
, Vol.
179
,
Academic
,
San Diego, CA
.
17.
Dissanayake
,
G.
,
Newman
,
P.
,
Clark
,
S.
,
Durrant-Whyte
,
H.
, and
Csorba
,
M.
, 2001, “
A Solution to the Simultaneous Localization and Map Building (SLAM) Problem
,”
IEEE Trans. Rob. Autom.
1042-296X,
17
(
3
), pp.
229
241
.
18.
Maksarov
,
D.
, and
Durrant-Whyte
,
H.
, 1995, “
Mobile Vehicle Navigation in Unknown Environments: A Multiple Hypothesis Approach
,”
IEE Proc.: Control Theory Appl.
1350-2379,
142
(
4
), pp.
385
400
.
19.
Joerger
,
M.
,
Christ
,
J.
,
Duncan
,
R.
, and
Pervan
,
B.
, 2006, “
Integrated Design of an AGV for Improved GPS-Based Path-Following Performance
,”
Int. J. Veh. Des.
0143-3369,
42
(
3-4
), pp.
263
286
.
20.
Joerger
,
M.
,
Christ
,
J.
,
Duncan
,
R.
, and
Pervan
,
B.
, 2004, “
Design of an AGV for Improved CDGPS-Based Control Performance
,”
Proceedings of the ION GNSS
.
21.
Bryson
,
A. E.
, and
Henrikson
,
L. J.
, 1968, “
Estimation Using Sampled Data Containing Sequentially Correlated Noise
,”
J. Spacecr. Rockets
0022-4650,
5
(
6
), pp.
662
665
.
22.
Pervan
,
B.
, and
Parkinson
,
B.
, 1997, “
Cycle Ambiguity Estimation for Aircraft Precision Landing Using the Global Positioning System
,”
J. Guid. Control Dyn.
0731-5090,
20
(
4
), pp.
681
689
.
23.
Bossert
,
K.
, 2004, “
Reclaiming Kaho’olawe
,”
Geospatial Solutions
,
14
(
9
), pp.
24
30
. 0002-7820
24.
Joerger
,
M.
, and
Pervan
,
B.
, 2006, “
Autonomous Ground Vehicle Navigation Using Integrated GPS and Laser-Scanner Measurements
,”
Proceedings of the ION/IEEE PLANS
, pp.
988
997
.
25.
Bryson
,
A. E.
, 2002,
Applied Linear Optimal Control
,
Cambridge University Press
,
Cambridge, UK
, pp.
310
312
.
26.
1974,
Applied Optimal Estimation
,
A.
Gelb
, ed.,
The MIT
,
Cambridge, MA
, Chap. 4, pp.
102
155
.
You do not currently have access to this content.