A discrete-time control design approach for periodically time-varying systems is introduced. The method employs a period-to-period (point-mapping) formulation of the system’s dynamics and a parametrization of the control input to obtain an equivalent time-invariant discrete-time representation of the system. The representation is generalized to include sampling within the period and varying sampling rates in different feedback loops. The proposed formulation allows for the design of feedback control laws using established discrete-time control methodologies. In this paper, dead-beat and optimal control laws with state- or output-feedback control are presented. An example of a multivariable control design for double inverted pendulum with periodic forcing is used to illustrate the proposed approach.

1.
Bolotin
,
V. V.
, 1964,
The Dynamic Stability of Elastic Systems
,
Holden Day
,
San Francisco
.
2.
Arcara
,
P.
, and
Bittanti
,
S.
, 2000, “
Periodic Control of Helicopter Rotors for Attenuation of Vibrations in Forward Flight
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
8
(
6
), pp.
883
894
.
3.
Calico
,
R. A.
, and
Wiesel
,
W. E.
, 1986, “
Stabilization of Helicopter Blade Flapping
,”
J. Am. Helicopter Soc.
0002-8711,
31
, pp.
59
64
.
4.
Webb
,
S. G.
,
Calico
,
R. A.
, and
Wiesel
,
W. E.
, 1991, “
Time-Periodic Control of a Multiblade Helicopter
,”
J. Guid. Control Dyn.
0731-5090,
14
(
6
), pp.
1301
1308
.
5.
McKillip
,
R. M.
, 1991, “
Periodic Model-Following for the Control-Configured Helicopter
,”
J. Am. Helicopter Soc.
0002-8711,
36
, pp.
4
12
.
6.
Tondl
,
A.
,
Ruijgrok
,
T.
,
Verhulst
,
F.
, and
Nabergoj
,
R.
, 2000,
Autoparametric Resonance in Mechanical Systems
,
Cambridge University Press
,
Cambridge, England
.
7.
Hale
,
J. K.
, 1963,
Oscillations in Nonlinear Systems
McGraw-Hill
,
New York
.
8.
Urabe
,
M.
, 1967,
Nonlinear Autonomous Oscillations
,
Academic
,
New York
.
9.
Bogoliobov
,
N. N.
, and
Mitropolsky
,
Y. A.
, 1961,
Asymptotic Methods in the Theory of Nonlinear Oscillations
,
Hindustan Company
,
Delhi
.
10.
Thompson
,
J. M. T.
, and
Stewart
,
H. B.
, 1986,
Nonlinear Dynamics and Chaos
,
Wiley, Chichester
,
New York
.
11.
Guckenheimer
,
J.
, and
Holmes
,
P.
, 1983,
Nonlinear Oscillations, Dynamics Systems, and Bifurcation of Vector Fields
,
Springer-Verlag
,
New York
.
12.
Yakubovich
,
V. A.
, and
Starzhinski
,
V. M.
, 1975,
Linear Differential Equations With Periodic Coefficients
,
Wiley
,
New York
.
13.
Sinha
,
S. C.
, and
Wu
,
D. H.
, 1991, “
An Efficient Computational Scheme for the Analysis of Periodic Systems
,”
J. Sound Vib.
0022-460X,
151
, pp.
91
117
.
14.
Sinha
,
S. C.
, and
Butcher
,
E. A.
, 1997, “
Symbolic Computation of Fundamental Solution Matrices for Time-Periodic Dynamical Systems
,”
J. Sound Vib.
0022-460X,
206
(
1
), pp.
61
85
.
15.
Bernussou
,
J.
, 1977,
Point Mapping Stability
,
Pergamon
,
Oxford
.
16.
Flashner
,
H.
, 1979, “
A Point Mapping Study of Dynamical Systems
,” Ph.D. thesis, University of California, Berkeley.
17.
Flashner
,
H.
, and
Hsu
,
C. S.
, 1983, “
A Study of Nonlinear Periodic Systems Via The Point Mapping Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
19
, pp.
185
215
.
18.
Flashner
,
H.
, and
Guttalu
,
R.
, 1990, “
Analysis of Nonlinear Nonautonomous Systems by Truncated Point-Mappings
,”
Int. J. Non-Linear Mech.
0020-7462,
24
(
4
), pp.
327
344
.
19.
Guttalu
,
R.
, and
Flashner
,
H.
, 1996, “
Stability Analysis of Periodic Systems by Truncated Point-Mappings
,”
J. Sound Vib.
0022-460X,
189
(
1
), pp.
33
54
.
20.
Kwakernaak
,
H.
, and
Sivan
,
R.
, 1972,
Linear Optimal Control Systems
,
Wiley Interscience
,
New York
.
21.
Sinha
,
S. C.
, and
Joseph
,
P.
, 1994, “
Control of General Dynamic System With Periodically Varying Parameters Via Liapunov-Floquet Transformation
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
116
, pp.
650
658
.
22.
Pandiyan
,
R.
, and
Sinha
,
S. C.
, 1999, “
Periodic Flap Control of a Helicopter Blade in Forward Flight
,”
J. Vib. Control
1077-5463,
5
, pp.
761
777
.
23.
Pandiyan
,
R.
, and
Sinha
,
S. C.
, 2001, “
Time Varying Controller Synthesis for Nonlinear Systems Subjected to Periodic Parametric Loadings
,”
J. Vib. Control
1077-5463,
7
, pp.
73
90
.
24.
Deshmukh
,
V. S.
, and
Sinha
,
S. C.
, 2004, “
Control of Dynamic Systems With Time-Periodic Coefficients Via the Lyapunov-Floquet Transformation and Backstepping Technique
,”
J. Vib. Control
1077-5463,
10
, pp.
1517
1533
.
25.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Workman
,
M. L.
, 1998,
Digital Control of Dynamic Systems
,
Addison-Wesley
,
Reading, MA
.
26.
de Boor
,
C.
, 2001,
A Practical Guide to Splines
,
Springer-Verlag
,
New York
.
27.
Hohenemser
,
K. H.
, and
Yin
,
S. K.
, 1972, “
Some Applications of the Method of Multiblade Coordinates
,”
J. Am. Helicopter Soc.
0002-8711,
17
(
3
), pp.
3
12
.
28.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J.
, 2002,
Concepts and Applications of Finite Element Analysis
,
Wiley
,
New York
.
29.
Bellman
,
R. E.
, 1957,
Dynamic Programming
,
Princeton University Press
,
NJ
.
30.
Chen
,
C.
, 1999,
Linear System Theory and Design
,
Oxford University Press
,
New York
.
31.
Kautsky
,
J.
, and
Nichols
,
N. K.
, 1985, “
Robust Pole Assignment in Linear State Feedback
,”
Int. J. Control
0020-7179,
41
, pp.
1129
1155
.
You do not currently have access to this content.