Entropy generation due to combustion destroys as much as a third of the theoretical maximum work that could have been extracted from the fuel supplied to an engine. Yet, there is no fundamental study in the literature that addresses the question of how this quantity can be minimized so as to improve combustion engine efficiency. This paper fills the gap by establishing the minimum entropy generated in an adiabatic, homogeneous combustion piston engine. The minimization problem is cast as a dynamical system optimal control problem, with the piston velocity profile serving as the control input function. The closed-form switching condition for the optimal bang-bang control is determined based on Pontryagin’s maximum principle. The switched control is shown to be a function of the pressure difference between the instantaneous thermodynamic state of the system and its corresponding equilibrium thermodynamic state at the same internal energy and volume. At optimality, the entropy difference between these two thermodynamic states is shown to be a Lyapunov function. In thermodynamic terms, the optimal solution reduces to a strategy of equilibrium entropy minimization. This result is independent of the underlying combustion mechanism. It precludes the possibility of matching the piston motion in some sophisticated fashion to the nonlinear combustion kinetics in order to improve the engine efficiency. For illustration, a series of numerical examples are presented that compare the optimal bang-bang solution with the nonoptimal conventional solution based on slider-crank piston motion. Based on the solution for minimum entropy generation, a bound for the maximum expansion work that the piston engine is capable of producing is also deduced.

1.
Jin
,
H.
,
Ishida
,
M.
,
Kobayashi
,
M.
, and
Nunokawa
,
M.
, 1997, “
Exergy Evaluation of Two Current Advanced Power Plants: Supercritical Steam Turbine and Combined Cycle
,”
ASME J. Energy Resour. Technol.
0195-0738,
119
(
4
), pp.
250
256
.
2.
Horlock
,
J. H.
,
Young
,
J. B.
, and
Manfrida
,
G.
, 2000, “
Exergy Analysis of Modern Fossil-Fuel Power Plants
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
122
(
1
), pp.
1
7
.
3.
Caton
,
J. A.
, 2000, “
A Review of Investigations Using the Second Law of Thermodynamics to Study Internal-Combustion Engines
,” SAE Paper No. 2000-01-1081.
4.
Caton
,
J. A.
, 2000, “
On the Destruction of Availability (Exergy) Due to Combustion Processes—With Specific Application to Internal-Combustion Engines
,”
Energy
0360-5442,
25
(
11
), pp.
1097
1117
.
5.
Chavannavar
,
P. S.
, and
Caton
,
J. A.
, 2006, “
Destruction of Availability (Exergy) Due to Combustion Processes: A Parametric Study
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
220
(
7
), pp.
655
669
.
6.
Van Gerpen
,
J. H.
, and
Shapiro
,
H. N.
, 1990, “
Second-Law Analysis of Diesel Engine Combustion
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
112
(
1
), pp.
129
137
.
7.
Shapiro
,
H. N.
, and
Van Gerpen
,
J. H.
, 1989, “
Two Zone Combustion Models for Second Law Analysis of Internal Combustion Engines
,” SAE Paper No. 890823.
8.
Caton
,
J. A.
, 2000, “
The Effect of Burn Rate Parameters on the Operating Attributes of a Spark-Ignition Engine as Determined From the Second Law of Thermodynamics
,”
Spring Technical Conference of the ASME ICE Division
,
San Antonio
,
TX
, ICE-Vol.
34-2
, Paper No. 2000-ICE-274.
9.
Hartl
,
R. F.
,
Sethi
,
S. P.
, and
Vickson
,
R. G.
, 1995, “
A Survey of the Maximum Principles for Optimal Control Problems With State Constraints
,”
SIAM Rev.
0036-1445,
37
(
2
), pp.
181
218
.
10.
Achten
,
P. A. J.
, 1994, “
A Review of Free Piston Engine Concepts
,” SAE Paper No. 941776.
11.
Van Blarigan
,
P.
,
Goldsborough
,
S.
,
Paradiso
,
N.
, and
Wu
,
J.
, 1998, “
Homogeneous Charge Compression Ignition Free Piston Linear Alternator
,” Sandia National Laboratories Report No. SAND99-8206.
12.
Cawthorne
,
W. R.
,
Famouri
,
P.
,
Chen
,
J.
,
Clark
,
N. N.
,
McDaniel
,
T. I.
,
Atkinson
,
R. J.
,
Nandkumar
,
S.
,
Atkinson
,
C. M.
, and
Petreanu
,
S.
, 1999, “
Development of a Linear Alternator-Engine for Hybrid Electric Vehicle Applications
,”
IEEE Trans. Veh. Technol.
0018-9545,
48
(
6
), pp.
1797
1802
.
13.
Bejan
,
A.
, 1996, “
Entropy Generation Minimization: The New Thermodynamics of Finite-Size Devices and Finite-Time Processes
,”
J. Appl. Phys.
0021-8979,
79
(
3
), pp.
1191
1218
.
14.
Hoffmann
,
K. H.
,
Burzler
,
J.
,
Fischer
,
A.
,
Schaller
,
M.
, and
Schubert
,
S.
, 2003, “
Optimal Process Paths for Endoreversible Systems
,”
J. Non-Equilib. Thermodyn.
0340-0204,
28
(
3
), pp.
233
268
.
15.
Hoffman
,
K. H.
,
Watowich
,
S. J.
, and
Berry
,
R. S.
, 1985, “
Optimal Paths for Thermodynamic Systems: The Ideal Diesel Cycle
,”
J. Appl. Phys.
0021-8979,
58
(
6
), pp.
2125
2134
.
16.
Burzler
,
J. M.
,
Blaudeck
,
P.
, and
Hoffmann
,
K. H.
, 2000, “
Optimal Piston Paths for Diesel Engines
,” in
Thermodynamics of Energy Conversion and Transport
,
S.
Sieniutycz
and
A. D.
Vos
, eds.,
Springer-Verlag
,
New York
, pp.
173
198
.
17.
Flowers
,
D.
,
Aceves
,
S.
,
Westbrook
,
C. K.
,
Smith
,
J. R.
, and
Dibble
,
R.
, 2001, “
Detailed Chemical Kinetic Simulation of Natural Gas HCCI Combustion: Gas Composition Effects and Investigation of Control Strategies
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
123
(
2
), pp.
433
439
.
18.
Prigogine
,
I.
, and
Defay
,
R.
, 1969,
Chemical Thermodynamics
,
Longmans
,
London
.
19.
Shaver
,
G. M.
,
Roelle
,
M. J.
,
Caton
,
P. A.
,
Kaahaaina
,
N. B.
,
Ravi
,
N.
,
Hathout
,
J. P.
,
Ahmed
,
J.
,
Kojic
,
A.
,
Park
,
S.
,
Edwards
,
C. F.
, and
Gerdes
,
J. C.
, 2005, “
A Physics-Based Approach to the Control of Homogeneous Charge Compression Ignition Engines With Variable Valve Actuation
,”
Int. J. Engine Res.
1468-0874,
6
(
4
), pp.
361
375
.
20.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, 2006, GRI-Mech Home Page, http://www.me.berkeley.edu/gri_mech/http://www.me.berkeley.edu/gri_mech/ (accessed Jan. 24, 2006).
21.
McBride
,
B. J.
,
Gordon
,
S.
, and
Reno
,
M. A.
, 1993, “
Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species
,” NASA Technical Memorandum No. TM-4513.
22.
Goodwin
,
D. G.
, 2003, “
An Open Source, Extensible Software Suite for CVD Process Simulation
,” in
Chemical Vapor Deposition XVI and EUROCVD 14
,
M. D.
Allendorf
,
F.
Maury
, and
F.
Teyssandier
, eds.,
The Electrochemical Society
,
New York
, pp.
155
162
.
You do not currently have access to this content.