A mathematical driver model is introduced in order to explain the driver steering behavior observed during successive double lane-change maneuvers. The model consists of a linear quadratic regulator path-following controller coupled to a neuromuscular system (NMS). The NMS generates the steering wheel angle demanded by the path-following controller. The model demonstrates that reflex action and muscle cocontraction improve the steer angle control and thus increase the path-following accuracy. Muscle cocontraction does not have the destabilizing effect of reflex action, but there is an energy cost. A cost function is used to calculate optimum values of cocontraction that are similar to those observed in the experiments. The observed reduction in cocontraction with experience of the vehicle is explained by the driver learning to predict the steering torque feedback. The observed robustness of the path-following control to unexpected changes in steering torque feedback arises from the reflex action and cocontraction stiffness of the NMS. The findings contribute to the understanding of driver-vehicle dynamic interaction. Further work is planned to improve the model; the aim is to enable the optimum design of steering feedback early in the vehicle development process.

1.
Cole
,
D. J.
,
Pick
,
A. J.
, and
Odhams
,
A. M. C.
, 2006, “
Predictive and Linear Quadratic Methods for Potential Application to Modelling Driver Steering Control
,”
Veh. Syst. Dyn.
0042-3114,
44
(
3
), pp.
259
284
.
2.
Pick
,
A. J.
, 2004, “
Neuromuscular Dynamics and the Vehicle Steering Task
,” Ph.D. thesis, University of Cambridge, Cambridge.
3.
MacAdam
,
C. C.
, 2003, “
Understanding and Modelling the Human Driver
,”
Veh. Syst. Dyn.
0042-3114,
40
, pp.
101
134
.
4.
Plöchl
,
M.
, and
Edelmann
,
J.
, 2007, “
Driver Models in Automobile Dynamics Application
,”
Veh. Syst. Dyn.
0042-3114,
45
(7 and 8), pp.
699
741
.
5.
Yuhara
,
N.
,
Horiuchi
,
S.
,
Iljima
,
T.
,
Shimizu
,
K.
, and
Asanuma
,
N.
, 1997, “
An Advanced Steering System With Active Kinaesthetic Feedback for Handling Qualities Improvement
,”
Veh. Syst. Dyn.
0042-3114,
27
, pp.
327
355
.
6.
Modjtahedzadeh
,
A.
, and
Hess
,
R. A.
, 1993, “
A Model of Driver Steering Control Behaviour for Use in Assessing Vehicle Handling Qualities
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
115
, pp.
456
464
.
7.
Pick
,
A. J.
, and
Cole
,
D. J.
, “
Measurement of the Dynamic Properties of a Driver’s Neuromuscular System
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
221
, pp.
1475
1486
.
8.
Pick
,
A. J.
, and
Cole
,
D. J.
, 2007, “
Neuro-Muscular Dynamics and the Vehicle Steering Task
,”
Veh. Syst. Dyn.
0042-3114,
41
, pp.
182
191
.
9.
Pick
,
A. J.
, and
Cole
,
D. J.
, 2006, “
Neuromuscular Dynamics in the Driver-Vehicle System
,”
Veh. Syst. Dyn.
0042-3114,
44
, pp.
624
631
.
10.
Pick
,
A. J.
, and
Cole
,
D. J.
, 2006, “
Measurement of Driver Steering Torque Using Electromyography
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
128
(
4
), pp.
960
968
.
11.
Pick
,
A. J.
, and
Cole
,
D. J.
, 2007, “
Measurement and Analysis of Muscle Activation During a Lane Change Manoeuvre
,”
Veh. Syst. Dyn.
0042-3114,
45
(
9
), pp.
781
805
.
12.
Cheong
,
D.
, 2006, “
Steering Torque Feedback
,” MEng thesis, Cambridge University, Cambridge.
13.
Sharp
,
R. S.
, and
Valtetsiotis
,
V.
, 2001, “
Optimal Preview Car Steering Control
,”
Veh. Syst. Dyn.
0042-3114,
35
, pp.
101
117
.
14.
Magdaleno
,
R. E.
, and
McRuer
,
D. T.
, 1971, “
Experimental Validation and Analytical Elaboration for Models of the Pilot’s Neuromuscular Subsystem in Tracking Tasks
,” NASA Contractor Report No. CR1757.
15.
Kandel
,
E. R.
,
Schwartz
,
J. H.
, and
Jessell
,
T. M.
, 2000,
Principles of Neural Science
, 4th ed.,
McGraw-Hill
,
New York
.
16.
Doemges
,
F.
, and
Rack
,
P. M. H.
, 1992, “
Task-Dependent Changes in the Response of Human Wrist Joints to Mechanical Disturbance
,”
J. Physiol. (London)
0022-3751,
447
, pp.
575
585
.
17.
Kearney
,
R. E.
,
Stein
,
R. B.
, and
Parameswaran
,
L.
, 1997, “
Identification of Intrinsic and Reflex Contributions to Human Ankle Stiffness Dynamics
,”
IEEE Trans. Biomed. Eng.
0018-9294,
44
(
6
), pp.
493
505
.
18.
Kirsch
,
R. F.
,
Kearney
,
J.
, and
MacNeil
,
J.
, 1993, “
Identification of Time-Varying Dynamics of the Human Triceps Surae Stretch Reflex
,”
Exp. Brain Res.
0014-4819,
97
, pp.
115
127
.
19.
Winter
,
D. A.
, 1990,
Biomechanics and Motor Control of Human Movement
, 2nd ed.,
Wiley
,
New York
.
20.
Hogan
,
N.
, 1984, “
Adaptive Control of Mechanical Impedance by Co-Activation of Antagonist Muscles
,”
IEEE Trans. Autom. Control
0018-9286,
29
(
8
), pp.
681
690
.
21.
Burdet
,
E.
,
Tee
,
K. P.
,
Mareels
,
I.
,
Milner
,
T. E.
,
Chew
,
C. M.
,
Franklin
,
D. W.
,
Osu
,
R.
, and
Kawato
,
M.
, 2006, “
Stability and Motor Adaptation in Human Arm Movements
,”
Biol. Cybern.
0340-1200,
94
, pp.
20
32
.
22.
de Vlugt
,
E.
,
Schouten
,
A. C.
, and
van der Helm
,
F. C. T.
, 2006, “
Quantification of Intrinsic and Reflexive Properties During Multijoint Arm Posture
,”
J. Neurosci. Methods
0165-0270,
155
, pp.
328
349
.
23.
de Vlugt
,
E.
,
van der Helm
,
F.
,
Schouten
,
A.
, and
Brouwn
,
G.
, 2001, “
Analysis of the Reflexive Feedback Control Loop During Posture Maintenance
,”
Biol. Cybern.
0340-1200,
84
, pp.
131
141
.
24.
Osu
,
R.
,
Franklin
,
D. W.
,
Kato
,
H.
,
Gomi
,
H.
,
Domen
,
K.
,
Yoshioka
,
T.
, and
Kawato
,
M.
, 2002, “
Short- and Long-Term Changes in Joint Co-Contraction Associated With Motor Learning as Revealed From Surface EMG
,”
J. Neurophysiol.
0022-3077,
88
, pp.
991
1004
.
25.
Osu
,
R.
,
Kamimura
,
N.
,
Iwasaki
,
H.
,
Nakano
,
E.
,
Harris
, and
C. M.
,
Wada
,
Y.
, 2004, “
Optimal Impedance Control for Task Achievement in the Presence of Signal-Dependent Noise
,”
J. Neurophysiol.
0022-3077,
92
, pp.
1199
1215
.
You do not currently have access to this content.