The tandem cold rolling of metal strip is a complex multivariable process whose control presents a significant engineering challenge because of the complex interaction between the process variables, the nonlinearities (which change with operating conditions), and the interstand time delays (which change significantly with the mill speed). The present technology generally relies on a control structure that has been successful in producing an acceptable output, but has limited capability for improvement in performance. This paper describes a new strategy for control of the mill that overcomes many limitations of the present controllers. The new strategy is based on a pointwise linear quadratic technique wherein a state-dependent algebraic Riccati equation is solved pointwise to establish a control law for a multiinput–multioutput controller, with appropriate trimming functions. For this application, the features of this novel strategy compare favorably to those of other techniques for control of nonlinear systems in the areas of simplicity of implementation, provision for the use of physical intuition in the design process, and strong robustness to disturbances and uncertainties. During simulations using the new controller coupled to a nonlinear model of the process, the tolerance in mill exit thickness was ∼0.2% for several rolling schedules using mild steel during operations at steady speed and during speed changes, and in the presence of typical disturbances with uncertainties in modeling and measurement. This offers the potential for improvement over present industrial controllers, which typically hold the tolerance in mill exit thickness to within 0.5–0.8%. In addition, excursions in the individual mill stand output thicknesses and interstand tensions are reduced, which contributes to the stability of the rolling process.

1.
Bryant
,
C. F.
, 1973,
Automation of Tandem Mills
,
British Iron and Steel Institute
,
London
.
2.
Carlton
,
A. J.
,
Conway
,
G. H.
,
Davies
,
R. G.
,
Edwards
,
W. J.
, and
Spooner
,
P. D.
, 1992, “
Automation of the LTV Steel Hennepin Tandem Cold Mill
,”
Iron Steel Eng.
0021-1559,
69
(
6
), pp.
17
28
.
3.
Duval
,
P.
,
Parks
,
J. C.
, and
Fellus
,
G.
, 1991, “
Latest AGC Technology Installed at LTV’s Cleveland 5-Stand Cold Mill
,”
Iron Steel Eng.
0021-1559,
68
(
11
), pp.
46
51
.
4.
Geddes
,
E. J. M.
, and
Postlewaite
,
I.
, 1998, “
Improvements in Product Quality in Tandem Cold Rolling Using Robust Multivariable Control
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
6
(
2
), pp.
257
269
.
5.
Hoshino
,
I.
,
Maekawa
,
Y.
,
Fujimoto
,
T.
, and
Kimura
,
H.
, 1998, “
Observer-based Multivariable Control of the Aluminum Cold Tandem Mill
,”
Automatica
0005-1098,
24
(
6
), pp.
741
754
.
6.
Pittner
,
J. R.
, and
Simaan
,
M. A.
, 2006, “
State-Dependent Riccati Equation Approach for Optimal Control of a Tandem Cold Metal Rolling Process
,”
IEEE Trans. Ind. Appl.
0093-9994,
42
(
3
), pp.
836
843
.
7.
Roberts
,
W. L.
, 1978,
Cold Rolling of Steel
,
Marcel Dekker
,
New York
, Chap. 6.
8.
Geddes
,
E. J. M.
, 1998, “
Tandem Cold Rolling and Robust Multivariable Control
,” Ph.D. thesis, University of Leicester, UK.
9.
Clautier
,
J. R.
, and
Stansbery
,
D. T.
, 2002, “
The Capabilities and Art of State-Dependent Riccati Equation-Based Design
,”
Proceedings of the American Control Conference
, Anchorage,
Institute of Electrical and Electronics Engineers (IEEE)
,
Piscataway, New Jersey
, pp.
86
91
.
10.
Clautier
,
J. R.
,
D’Souza
,
N.
, and
Mracek
,
C. P.
, 1996, “
Nonlinear Regulation and Nonlinear H∞ Control Via the State-Dependent Riccati Equation Technique: Part1, Theory
,”
Proceedings of the International Conference on Nonlinear Problems in Aviation and Aerospace
, Embry Riddle University,
Embry Riddle University Press
,
Daytona Beach, Florida
, pp.
117
131
.
11.
Athans
,
M.
, and
Falb
,
P. L.
, 1966,
Optimal Control An Introduction to the Theory and Its Applications
,
McGraw-Hill
,
New York
, Chap. 9.
12.
Lewis
,
F. A.
, 1986,
Optimal Control
,
Wiley
,
New York
, Chap. 3.
13.
Hammet
,
K. D.
, 1997, “
Control of Nonlinear Systems via State Feedback State-Dependent Riccati Equation Techniques
,” Ph.D. thesis, Air Force Institute of Technology.
14.
Erdem
,
E. B.
, 2001, “
Analysis and Real-Time Implementation of State-Dependent Riccati Equation Controlled Systems
,” Ph.D. thesis, University of Illinois, Urbana-Champaign.
15.
Kinney
,
C. S.
, and
Laub
,
J. Allan
, 1995, “
The Matrix Sign Function
,”
IEEE Trans. Autom. Control
0018-9286,
40
(
8
), pp.
1330
1348
.
16.
Pittner
,
J. R.
, 2006, “
Pointwise Linear Quadratic Optimal Control of a Tandem Cold Rolling Mill
,” Ph.D. thesis, University of Pittsburgh, Pittsburgh.
17.
Teoh
,
E. K.
,
Goodwin
,
G. C.
,
Edwards
,
W. J.
, and
Davies
,
R. G.
, 1984, “
An Improved Thickness Controller for A Rolling Mill
,”
Proceedings of IFAC 9th Triennial World Congress
, Budapest,
Pergamon Press
,
Oxford, UK
, pp.
1741
1746
.
18.
Ginzburg
,
V. B.
, 1993,
High Quality Steel Rolling, Theory and Practice
,
Marcel-Dekker
,
New York
, Chap. 9.
19.
Zillman
,
M.
, 2004, “
Accuspeed Laser Velocimeter Model ASD1000A Description and Specifications DS. ASPD.808.2
,” George Kelk Corp. US-7196Q.
20.
Roberts
,
W. L.
, 1987,
Flat Processing of Steel
,
Marcel Dekker
,
New York
, Chaps. 14, 22.
21.
Ginzburg
,
V. B.
, 1998,
Roll Eccentricity, Rolling Mill Technology Series, Vol. 1
,
International Rolling Mill Consultants
,
Pittsburgh
.
22.
Hayes
,
M. H.
, 1996,
Statistical Digital Signal Processing and Modeling
,
Wiley
,
New York
, Chap. 9.
23.
Kugi
,
A.
,
Haas
,
W.
,
Schlacher
,
K.
,
Aistleitner
,
K.
,
Frank
,
H. M.
, and
Rigler
,
G. W.
, 2000, “
Active Compensation of Roll Eccentricity in Rolling Mills
,”
IEEE Trans. Ind. Appl.
0093-9994,
36
(
2
), pp.
625
632
.
24.
Tezuka
,
T.
,
Yamashita
,
T.
,
Sato
,
T.
,
Abiko
,
Y.
,
Kanai
,
T.
, and
Sawada
,
M.
, 2001, “
Application of a New Automatic Gauge Control System for the Tandem Cold Mill
,”
IEEE IAS 2001 Conference Record of the 36th IAS Annual Meeting
,
2
, pp.
955
960
.
25.
Sekiguchi
,
K.
,
Seki
,
Y.
,
Okitani
,
N.
,
Fukuda
,
M.
,
Critchley
,
S.
,
Habib
,
W. G.
,
Hartman
,
D.
, and
Shaw
,
K.
, 1996, “
The Advanced Set-Up and Control System for Dofasco’s Tandem Cold Mill
,”
IEEE Trans. Ind. Appl.
0093-9994,
32
(
3
), pp.
608
616
.
You do not currently have access to this content.