This paper deals with the problem of fault diagnosis (FD) for a class of nonlinear systems. The scheme is based on a discrete-time diagnostic observer that computes a prediction of the system’s state. Compensation of the fault effect on the state prediction is achieved via an adaptive discrete-time approach, based on a parametric model of the faults. A stability proof is developed to prove the global exponential stability of the state estimates. A solution for fault isolation and identification is also proposed, based on a postfault analysis. The proposed FD approach is applied and experimentally tested on a conventional industrial robot manipulator.

1.
Chen
,
J.
, and
Patton
,
R. J.
, 1999,
Robust Model Based Fault Diagnosis for Dynamic Systems
,
Kluwer Academic Publishers
, Dordrecht.
2.
Frank
,
P. M.
, 1990, “
Fault Diagnosis in Dynamic Systems Using Analytical and Knowledge-Based Redudancy—A Survey and Some New Results
,”
Automatica
0005-1098,
26
, pp.
459
474
.
3.
Frank
,
P. M.
, 1996, “
Analytical and Qualitative Model-Based Fault Diagnosis—A Survey and Some New Results
,”
Eur. J. Control
0947-3580,
2
, pp.
6
28
.
4.
Gertler
,
J.
, 1998,
Fault Detection and Diagnosis in Engineering Systems
,
Marcel Dekker
, New York.
5.
Patton
,
R. J.
,
Frank
,
P. M.
, and
Clark
,
R. N.
, 2000,
Issues in Fault Diagnosis for Dynamic Systems
,
Springer-Verlag
, Berlin.
6.
Isermann
,
R.
, and
Freyermuth
,
B.
, 1991, “
Process Fault Diagnosis Based on Process Model Knowledge—Part I: Principles for Fault Diagnosis With Parameter Estimation
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
113
, pp.
620
626
.
7.
Isermann
,
R.
, and
Freyermuth
,
B.
, 1991, “
Process Fault Diagnosis Based on Process Model Knowledge—Part II: Case Study, Experiment
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
113
, pp.
627
633
.
8.
De Persis
,
C.
, and
Isidori
,
A.
, 2001, “
A geometric Approach to Nonlinear Fault Detection and Isolation
,”
IEEE Trans. Autom. Control
0018-9286,
46
, pp.
853
865
.
9.
Mattone
,
R.
, and
De Luca
,
A.
, 2006, “
Relaxed Fault Detection and Isolation: An Application to a Nonlinear Case Study
,”
Automatica
0005-1098,
42
, pp.
109
116
.
10.
Demetriou
,
M. A.
, and
Polycarpou
,
M. M.
, 1998, “
Incipient Fault Diagnosis of Dynamical Systems Using Online Approximators
,”
IEEE Trans. Autom. Control
0018-9286,
43
, pp.
1612
1617
.
11.
Polycarpou
,
M. M.
, and
Helmicki
,
A. J.
, 1995, “
Automated Fault Detection and Accomodation: A Learning Systems Approach
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
25
, pp.
1447
1458
.
12.
Trunov
,
A. B.
, and
Polycarpou
,
M. M.
, 2000, “
Automated Fault Diagnosis in Nonlinear Multivariable Systems Using a Learning Methodology
,”
IEEE Trans. Neural Netw.
1045-9227,
11
, pp.
91
101
.
13.
Vemuri
,
A.
, and
Polycarpou
,
M. M.
, 1996, “
Robust Nonlinear Fault Diagnosis in Input–Output Systems
,”
Int. J. Control
0020-7179,
68
, pp.
343
360
.
14.
Vemuri
,
A. T.
, 2001, “
Sensor Bias Fault Diagnosis in a Class of Nonlinear Systems
,”
IEEE Trans. Autom. Control
0018-9286,
46
, pp.
949
954
.
15.
Zhang
,
X.
,
Polycarpou
,
M. M.
, and
Parisini
,
T.
, 2002, “
A Robust Detection and Isolation Scheme for Abrupt and Incipient Faults in Nonlinear Systems
,”
IEEE Trans. Autom. Control
0018-9286,
47
, pp.
576
593
.
16.
Xu
,
A.
, and
Zhang
,
Q.
, 2004, “
Residual Generation for Fault Diagnosis in Linear Time-Varying Systems
,”
IEEE Trans. Autom. Control
0018-9286,
49
, pp.
767
772
.
17.
Caccavale
,
F.
, and
Villani
,
L.
, 2004, “
An Adaptive Observer for Fault Diagnosis in Nonlinear Discrete-Time Systems
,”
Proceedings of the 2004 American Control Conference
,
IEEE
,
Piscataway, NJ
, pp.
2463
2468
.
18.
Caccavale
,
F.
, and
Villani
,
L.
, 2002, “
Fault Diagnosis for Industrial Robots
,”
Fault Diagnosis and Fault Tolerance for Mechatronic Systems: Recent Advances
,
Caccavale
,
F.
, and
Villani
,
L.
, eds.,
Springer-Verlag
, Berlin.
19.
Patton
,
R. J.
,
Uppal
,
F. J.
, and
Lopez-Toribio
,
C. J.
, 2001, “
Soft Computing Approaches to Fault Diagnosis for Dynamic Systems: A Survey
,” Preprints of the 4th IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, Budapest, pp.
298
311
.
20.
de Vahl Davis
,
G.
, 1986,
Numerical Methods in Engineering and Science
,
Allen & Unwin
, London.
21.
Funahashi
,
K.
, 1989, “
On the Approximate Realization of Continuous Mappings by Neural Networks
,”
Neural Networks
0893-6080,
2
, pp.
183
192
.
22.
Haykin
,
S.
, 1998,
Neural Networks: A Comprehensive Foundation
,
Prentice Hall
, Englewood Cliffs, NJ.
23.
Åström
,
K. J.
, and
Wittenmark
,
B.
, 1995,
Adaptive Control
, 2nd ed.,
Addison-Wesley
, Reading, MA.
24.
Khalil
,
H. K.
, 1996,
Nonlinear Systems
, 2nd ed.,
Prentice Hall
, Englewood Cliffs, NJ.
25.
Antonelli
,
G.
,
Caccavale
,
F.
, and
Chiacchio
,
P.
, 1999 “
A Systematic Procedure for the Identification of Dynamic Parameters of Robot Manipulators
,”
Robotica
0263-5747,
17
, pp.
427
435
.
26.
Antonelli
,
G.
,
Caccavale
,
F.
,
Sansone
,
C.
, and
Villani
,
L.
, 2004 “
Fault Diagnosis for AUVs Using Support Vector Machines
,”
Proceedings of the 2004 IEEE International Conference on Robotics and Automation
, New Orleans,
IEEE
, New York, pp.
4486
4491
.
You do not currently have access to this content.