This paper deals with the problem of fault diagnosis (FD) for a class of nonlinear systems. The scheme is based on a discrete-time diagnostic observer that computes a prediction of the system’s state. Compensation of the fault effect on the state prediction is achieved via an adaptive discrete-time approach, based on a parametric model of the faults. A stability proof is developed to prove the global exponential stability of the state estimates. A solution for fault isolation and identification is also proposed, based on a postfault analysis. The proposed FD approach is applied and experimentally tested on a conventional industrial robot manipulator.
Issue Section:
Research Papers
1.
Chen
, J.
, and Patton
, R. J.
, 1999, Robust Model Based Fault Diagnosis for Dynamic Systems
, Kluwer Academic Publishers
, Dordrecht.2.
Frank
, P. M.
, 1990, “Fault Diagnosis in Dynamic Systems Using Analytical and Knowledge-Based Redudancy—A Survey and Some New Results
,” Automatica
0005-1098, 26
, pp. 459
–474
.3.
Frank
, P. M.
, 1996, “Analytical and Qualitative Model-Based Fault Diagnosis—A Survey and Some New Results
,” Eur. J. Control
0947-3580, 2
, pp. 6
–28
.4.
Gertler
, J.
, 1998, Fault Detection and Diagnosis in Engineering Systems
, Marcel Dekker
, New York.5.
Patton
, R. J.
, Frank
, P. M.
, and Clark
, R. N.
, 2000, Issues in Fault Diagnosis for Dynamic Systems
, Springer-Verlag
, Berlin.6.
Isermann
, R.
, and Freyermuth
, B.
, 1991, “Process Fault Diagnosis Based on Process Model Knowledge—Part I: Principles for Fault Diagnosis With Parameter Estimation
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 113
, pp. 620
–626
.7.
Isermann
, R.
, and Freyermuth
, B.
, 1991, “Process Fault Diagnosis Based on Process Model Knowledge—Part II: Case Study, Experiment
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 113
, pp. 627
–633
.8.
De Persis
, C.
, and Isidori
, A.
, 2001, “A geometric Approach to Nonlinear Fault Detection and Isolation
,” IEEE Trans. Autom. Control
0018-9286, 46
, pp. 853
–865
.9.
Mattone
, R.
, and De Luca
, A.
, 2006, “Relaxed Fault Detection and Isolation: An Application to a Nonlinear Case Study
,” Automatica
0005-1098, 42
, pp. 109
–116
.10.
Demetriou
, M. A.
, and Polycarpou
, M. M.
, 1998, “Incipient Fault Diagnosis of Dynamical Systems Using Online Approximators
,” IEEE Trans. Autom. Control
0018-9286, 43
, pp. 1612
–1617
.11.
Polycarpou
, M. M.
, and Helmicki
, A. J.
, 1995, “Automated Fault Detection and Accomodation: A Learning Systems Approach
,” IEEE Trans. Syst. Man Cybern.
0018-9472, 25
, pp. 1447
–1458
.12.
Trunov
, A. B.
, and Polycarpou
, M. M.
, 2000, “Automated Fault Diagnosis in Nonlinear Multivariable Systems Using a Learning Methodology
,” IEEE Trans. Neural Netw.
1045-9227, 11
, pp. 91
–101
.13.
Vemuri
, A.
, and Polycarpou
, M. M.
, 1996, “Robust Nonlinear Fault Diagnosis in Input–Output Systems
,” Int. J. Control
0020-7179, 68
, pp. 343
–360
.14.
Vemuri
, A. T.
, 2001, “Sensor Bias Fault Diagnosis in a Class of Nonlinear Systems
,” IEEE Trans. Autom. Control
0018-9286, 46
, pp. 949
–954
.15.
Zhang
, X.
, Polycarpou
, M. M.
, and Parisini
, T.
, 2002, “A Robust Detection and Isolation Scheme for Abrupt and Incipient Faults in Nonlinear Systems
,” IEEE Trans. Autom. Control
0018-9286, 47
, pp. 576
–593
.16.
Xu
, A.
, and Zhang
, Q.
, 2004, “Residual Generation for Fault Diagnosis in Linear Time-Varying Systems
,” IEEE Trans. Autom. Control
0018-9286, 49
, pp. 767
–772
.17.
Caccavale
, F.
, and Villani
, L.
, 2004, “An Adaptive Observer for Fault Diagnosis in Nonlinear Discrete-Time Systems
,” Proceedings of the 2004 American Control Conference
, IEEE
, Piscataway, NJ
, pp. 2463
–2468
.18.
Caccavale
, F.
, and Villani
, L.
, 2002, “Fault Diagnosis for Industrial Robots
,” Fault Diagnosis and Fault Tolerance for Mechatronic Systems: Recent Advances
, Caccavale
, F.
, and Villani
, L.
, eds., Springer-Verlag
, Berlin.19.
Patton
, R. J.
, Uppal
, F. J.
, and Lopez-Toribio
, C. J.
, 2001, “Soft Computing Approaches to Fault Diagnosis for Dynamic Systems: A Survey
,” Preprints of the 4th IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, Budapest, pp. 298
–311
.20.
de Vahl Davis
, G.
, 1986, Numerical Methods in Engineering and Science
, Allen & Unwin
, London.21.
Funahashi
, K.
, 1989, “On the Approximate Realization of Continuous Mappings by Neural Networks
,” Neural Networks
0893-6080, 2
, pp. 183
–192
.22.
Haykin
, S.
, 1998, Neural Networks: A Comprehensive Foundation
, Prentice Hall
, Englewood Cliffs, NJ.23.
Åström
, K. J.
, and Wittenmark
, B.
, 1995, Adaptive Control
, 2nd ed., Addison-Wesley
, Reading, MA.24.
Khalil
, H. K.
, 1996, Nonlinear Systems
, 2nd ed., Prentice Hall
, Englewood Cliffs, NJ.25.
Antonelli
, G.
, Caccavale
, F.
, and Chiacchio
, P.
, 1999 “A Systematic Procedure for the Identification of Dynamic Parameters of Robot Manipulators
,” Robotica
0263-5747, 17
, pp. 427
–435
.26.
Antonelli
, G.
, Caccavale
, F.
, Sansone
, C.
, and Villani
, L.
, 2004 “Fault Diagnosis for AUVs Using Support Vector Machines
,” Proceedings of the 2004 IEEE International Conference on Robotics and Automation
, New Orleans, IEEE
, New York, pp. 4486
–4491
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.