Control of deep-space spacecraft formation flying is investigated in this paper using the virtual structure approach and the θ-D suboptimal control technique. The circular restricted three-body problem with the Sun and the Earth as the two primaries is utilized as a framework for study and a two-satellite formation flying scheme is considered. The virtual structure is stationkept in a nominal orbit around the L2 libration point. A maneuver mode of formation flying is then considered. Each spacecraft is required to maneuver to a new position and the formation line of sight is required to rotate to a desired orientation to acquire new science targets. During the rotation, the formation needs to be maintained and each spacecraft’s attitude must align with the rotating formation orientation. The basic strategy is based on a “virtual structure” topology. A nonlinear model is developed that describes the relative formation dynamics. This highly nonlinear position and attitude control problem is solved by employing a recently developed nonlinear control approach, called the θ-D technique. This method is based on an approximate solution to the Hamilton-Jacobi-Bellman equation and yields a closed-form suboptimal feedback solution. The controller is designed such that the relative position error of the formation is maintained within 1cm accuracy.

1.
Leitner
,
J.
,
Bauer
,
F.
,
How
,
J.
,
Moreau
,
M.
,
Carpenter
,
R.
, and
Folta
,
D.
, 2001,
Formation Flight in Space: Distributed Spacecraft Systems Develop New GPS Capabilities
GPS World (in press).
2.
Wang
,
P. K. C.
, and
Hadaegh
,
F. Y.
, 1996, “
Coordination and Control of Multiple Microspacecraft Moving in Formation
,”
J. Astronaut. Sci.
0021-9142,
44
(
3
), pp.
315
355
.
3.
Lawton
,
J.
, and
Beard
,
R. W.
, 2000, “
Synchronized Multiple Spacecraft Rotations
,”
Automatica
0005-1098,
38
(
8
), pp.
1359
1364
.
4.
Ren
,
W.
, and
Beard
,
R.
, 2004, “
Decentralized Scheme for Spacecraft Formation Flying Via the Virtual Structure Approach
,”
J. Guid. Control Dyn.
0731-5090,
27
(
1
), pp.
73
82
.
5.
Beard
,
R. W.
,
Lawton
,
J.
, and
Hadaegh
,
F. Y.
, 2001, “
A Coordination Architecture for Formation Control
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
9
(
6
), pp.
777
790
.
6.
Ren
,
W.
, and
Beard
,
R.
, 2004, “
Formation Feedback Control for Multiple Spacecraft Via Virtual Structures
,”
IEE Proc.: Control Theory Appl.
1350-2379,
151
(
3
), pp.
357
368
.
7.
Hammer
,
J.
,
Piper
,
G.
,
Thorp
,
O.
, and
Watkins
,
J.
, 2004, “
Investigating Virtual Structure Based Control Strategies for Spacecraft Formation Maneuvers
,”
AIAA Guidance, Navigation and Control Conference and Exhibit
,
Providence, RI
, Aug. 16–19, AIAA Paper No. 2004-4898, pp.
1
6
.
8.
Vassar
,
R. H.
, and
Sherwood
,
R. B.
, 1985, “
Formation Keeping for a Pair of Satellites in a Circular Orbit
,”
J. Guid. Control Dyn.
0731-5090,
8
(
2
), pp.
235
242
.
9.
Ulybyshev
,
Y.
, 1998, “
Long-Term Formation Keeping of Satellite Constellation Using Linear Quadratic Controller
,”
J. Guid. Control Dyn.
0731-5090,
21
(
1
), pp.
109
115
.
10.
Yeh
,
H. H.
,
Nelson
,
E.
, and
Sparks
,
A.
, 2002, “
Nonlinear Tracking Control for Satellite Formations
,”
J. Guid. Control Dyn.
0731-5090,
25
(
2
), pp.
376
386
.
11.
Hadaegh
,
F. Y.
,
Lu
,
W. M.
, and
Wang
,
P. C.
, 1998, “
Adaptive Control of Formation Flying Spacecraft for Interferometry
,”
IFAC Conference on Large Scale Systems
,
Rio Patras, Greece
, pp.
97
102
.
12.
de Querioz
,
M. S.
,
Kapila
,
V.
, and
Yan
,
Q.
, 2000, “
Adaptive Nonlinear Control of Multiple Spacecraft Formation Flying
,”
J. Guid. Control Dyn.
0731-5090,
23
(
3
), pp.
385
390
.
13.
Gurfil
,
P.
,
Idan
,
M.
, and
Kasdin
,
N. J.
, 2003, “
Adaptive Neural Control of Deep-Space Formation Flying
,”
J. Guid. Control Dyn.
0731-5090,
26
(
3
), pp.
491
501
.
14.
Xin
,
M.
, and
Balakrishnan
,
S. N.
, 2005, “
A New Method for Suboptimal Control of a Class of Nonlinear Systems
,”
Opt. Control Appl. Methods
0143-2087,
26
(
2
), pp.
55
83
.
15.
Howell
,
K. C.
, and
Pernicka
,
H. J.
, 1988, “
Numerical Determination of Lissajous Trajectories in the Restricted Three-Body Problem
,”
Celest. Mech.
0008-8714,
41
(
1–4
), pp.
107
124
.
16.
Sidi
,
M. J.
, 1997,
Spacecraft Dynamics and Control
,
Cambridge University Press
,
New York
.
17.
Bryson
, Jr.,
A. E.
, and
Ho
,
Y.-C.
, 1975,
Applied Optimal Control
,
Hemisphere Publishing Corporation
,
New York
.
18.
Xin
,
M.
,
Balakrishnan
,
S. N.
,
Stansbery
,
D. T.
, and
Ohlmeyer
,
E. J.
, 2004, “
Nonlinear Missile Autopilot Design With Theta-D Technique
,”
J. Guid. Control Dyn.
0731-5090,
27
(
3
), pp.
406
417
.
19.
Cloutier
,
J. R.
, and
Stansbery
,
D. T.
, 2001, “
The Capabilities and Art of State-Dependent Riccati Equation-Based Design
,”
Proceedings of the American Control Conference
,
The American Automatic Control Council
,
IEEE
,
Piscataway, NJ
, Vol.
5
, pp.
3352
3357
.
20.
Marchand
,
B. G.
, and
Howell
,
K. C.
, 2005, “
Control Strategies for Formation Flight in the Vicinity of the Libration Points
,”
J. Guid. Control Dyn.
0731-5090,
28
(
6
), pp.
1210
1219
.
21.
Polzin
,
K. A.
,
Choueiri
,
E. Y.
,
Gurfil
,
P.
, and
Kasdin
,
N. J.
, 2002, “
Plasma Propulsion Options for Multiple Terrestrial Planet Finder Architectures
,”
J. Spacecr. Rockets
0022-4650,
39
(
3
), pp.
347
356
.
You do not currently have access to this content.