In this paper, a multi-level fuzzy control (MLFC) technique is developed and implemented for a creep-feed grinding process. The grinding force is maintained at the maximum allowable level under varying depth of cut, so that the highest metal removal rate is achieved with a good workpiece surface quality. The control rules are generated heuristically without any analytical model of the grinding process. Based on the real-time force measurement, the control parameters are adapted automatically within a stable range. A National Instrument real-time control computer is implemented in an open architecture control system for the grinding machine. Experimental results show that the cycle time has been reduced by up to 25% over those without force control and by 10–20% compared with the conventional fuzzy logic controller, which indicates its effectiveness in improving the productivity of actual manufacturing processes. The effect of grinding wheel wear is also considered in the creep-feed grinding process, where the grinding force/power can be maintained around the specified value by the proposed MLFC controller as the wheel dulls gradually.

1.
Brinksmeier
,
E.
, and
Popp
,
C.
, 1991, “
A Selftuning Adaptive Control System for Grinding Processes
,”
CIRP Ann.
0007-8506,
40
(
1
), pp.
355
358
.
2.
Hahn
,
R. S.
, 1965, “
Some Characteristics of Controlled Force Grinding
,”
Proceeding of the Sixth International Machine Tool Design Research Conference
, edited by
S. A.
Tobias
and
F.
Koenigsberger
,
Pergamon Press, Ltd.
, pp.
597
609
.
3.
Jenkins
,
H. E.
,
Kurfess
,
T. R.
, and
Dorf
,
R. C.
, 1996, “
Design of a Robust Controller for a Grinding System
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
4
(
1
), pp.
40
49
.
4.
Ulrich
,
B.
,
Srivastava
,
A.
, and
Elbestawi
,
M.
, 1992, “
Analysis of the Robotic Disc Grinding Process
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
7
(
2
), pp.
82
93
.
5.
Whitney
,
D. E.
,
Edsall
,
A. C.
,
Todtenkopf
,
A. B.
,
Kurfess
,
T. R.
, and
Tate
,
A. R.
, 1990, “
Development of an Automated Robotic Weld Bead Grinding System
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
112
, pp.
166
175
.
6.
Werner
,
G.
, 1978, “
Influence of Work Material on Grinding Forces
,”
CIRP Ann.
0007-8506,
27
, pp.
243
248
.
7.
Tönshoff
,
H. K.
,
Zinngrebe
,
M.
, and
Kemmerling
,
M.
, 1991, “
Optimization of Internal Grinding by Microcomputer-Based Force Control
,” Control of Manufacturing Processes, ASME Winter Annual Meeting, DSC Division, Atlanta, GA, Dec. 1–6, Vol. 28, pp.
67
77
.
8.
Jenkins
,
H. E.
, and
Kurfess
,
T. R.
, 1999, “
Adaptive Pole-Zero Cancellation in Grinding Force Control
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
7
(
3
), pp.
363
370
.
9.
Guo
,
L.
,
Schöne
,
A.
, and
Ding
,
X.
, 1993, “
Grinding Force Control Using Nonlinear Adaptive Strategy
,” 12th World Congress IFAC, Sydney, Australia, July 18–23, Vol. 5, pp.
459
462
.
10.
Shin
,
Y. C.
, and
Vishnupad
,
P.
, 1996, “
Neuro-Fuzzy Control of Complex Manufacturing Processes
,”
Int. J. Prod. Res.
0020-7543,
34
(
12
), pp.
3291
3309
.
11.
Rowe
,
W. B.
,
Yan
,
L.
,
Inasaki
,
I.
, and
Malkin
,
S.
, 1994, “
Applications of Artificial Intelligence in Grinding
,”
CIRP Ann.
0007-8506,
43
(
2
), pp.
521
531
.
12.
Zhu
,
J. Y.
,
Shumsheruddin
,
A. A.
, and
Bollinger
,
J. G.
, 1982, “
Control of Machine Tools Using the Fuzzy Control Technique
,”
CIRP Ann.
0007-8506,
31
(
1
), pp.
347
352
.
13.
Chen
,
Y. T.
, and
Shin
,
Y. C.
, 1991, “
A Surface Grinding Process Advisory System With Fuzzy Logic
,” Control of Manufacturing Processes, ASME Winter Annual Meeting, DSC Division, Atlanta, GA, Dec. 1–6, Vol. 28, pp.
67
77
.
14.
Lee
,
C. W.
,
Choi
,
T.
, and
Shin
,
Y. C.
, 2003, “
Intelligent Model-Based Optimization of the Surface Grinding Process for Heat-Treated 4140 Steel Alloys With Aluminum Oxide Grinding Wheels
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
65
76
.
15.
Zhao
,
Y. W.
, and
Webster
,
J.
, 1990, “
Fuzzy Pattern Recognition and Automatic Steady Control in Roller Grinding
,”
Proceedings of 2nd IEEE International Conference of Computer Integrated Manufacturing
, Troy, NY, May 21–23, pp.
395
401
.
16.
Xu
,
C.
, and
Shin
,
Y. C.
, 2005, “
Design of a Multi-Level Fuzzy Controller and Stability Analysis of Nonlinear Processes
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
13
(
6
), pp.
761
778
.
17.
Farinwata
,
S. S.
,
Filev
,
D.
, and
Langari
,
R.
, 2000,
Fuzzy Control Synthesis and Analysis
,
Wiley
, New York.
18.
Calcev
,
G.
, 1998, “
Some Remarks on the Stability of Mamdani Fuzzy Control Systems
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
6
(
3
), pp.
436
442
.
19.
Aracil
,
J.
, and
Gordillo
,
F.
, 2000,
Stability Issues in Fuzzy Control
, Physica-Verlag,
A Springer-Verlag Company
, New York.
20.
Ying
,
H.
, 1994, “
Practical Design of Nonlinear Fuzzy Controllers With Stability Analysis for Regulating Processes With Unknown Mathematical Models
,”
Automatica
0005-1098,
30
(
7
), pp.
1185
1195
.
21.
Procyk
,
T. J.
, and
Mamdani
,
E. H.
, 1979, “
A Linguistic Self-Organizing Process Controller
,”
Automatica
0005-1098,
15
(
1
), pp.
15
30
.
22.
Lee
,
C. C.
, 1990, “
Fuzzy Logic in Control System: Fuzzy Logic Controller—Part I
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
20
(
2
), pp.
404
418
.
23.
Passino
,
K. M.
, and
Yurkovich
,
S.
, 1998,
Fuzzy Control
,
Addison Wesley
, Reading, MA.
24.
Linkens
,
D. A.
, and
Abbod
,
M. F.
, 1992, “
Self-Organising Fuzzy Logic Control and the Selection of its Scaling Factors
,”
Trans. Inst. Meas. Control (London)
0142-3312,
14
(
3
), pp.
114
125
.
25.
Hsu
,
P.-L.
, and
Fann
,
W.-R.
, 1996, “
Fuzzy Adaptive Control of Machining Processes With a Self-Learning Algorithm
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
118
, pp.
522
530
.
26.
Haber
,
R. E.
,
Haber
,
R. H.
,
Alique
,
A.
, and
Ros
,
S.
, 2000, “
Hierarchical Fuzzy Control of the Milling Process With a Self-Tuning Algorithm
,”
Proceedings of the 2000 IEEE International Symposium on Intelligent Control
, Rio Patras, Greece, July 17–19, pp.
115
120
.
27.
Rober
,
S.
, and
Shin
,
Y. C.
, 1995, “
Modeling and Control of CNC Machines Using a PC-Based Open Architecture Controller
,”
Mechatronics
0957-4158,
5
(
4
), pp.
401
420
.
28.
Amitay
,
G.
,
Malkin
,
S.
, and
Koren
,
Y.
, 1981, “
Adaptive Control Optimization of Grinding
,”
ASME J. Eng. Ind.
0022-0817,
103
, pp.
103
108
.
29.
Malkin
,
S.
, 1978, “
Burning Limits for Surface and Cylindrical Grinding of Steels
,”
CIRP Ann.
0007-8506,
27
(
1
), pp.
233
236
.
30.
Younis
,
M.
,
Sadek
,
M. M.
, and
EI-Wardani
,
T.
, 1987, “
A New Approach to Development of a Grinding Force Model
,”
ASME J. Eng. Ind.
0022-0817,
109
, pp.
306
313
.
31.
Saini
,
D. P.
, 1990, “
Wheel Hardness and Local Elastic Deflections in Grinding
,”
Int. J. Mach. Tools Manuf.
0890-6955,
30
(
4
), pp.
637
649
.
32.
Saini
,
D. P.
, and
Wager
,
J. G.
, 1985, “
Local Contact Deflections and Forces in Grinding
,”
CIRP Ann.
0007-8506,
34
(
1
), pp.
281
285
.
33.
Chiu
,
N.
, and
Malkin
,
S.
, 1993, “
Computer Simulation for Cylindrical Plunge Grinding
,”
CIRP Ann.
0007-8506,
42
(
1
), pp.
383
387
.
34.
Brenner
,
N.
, and
Torrance
,
A. A.
, 1993, “
Wheel Sharpness Measurement for Force Prediction in Grinding
,”
Wear
0043-1648,
160
, pp.
317
323
.
35.
Malkin
,
S.
, and
Cook
,
N. H.
, 1971, “
The Wear of Grinding Wheels, Part I—Attritious Wear
,”
ASME J. Eng. Ind.
0022-0817,
93
, pp.
1120
1128
.
36.
Malkin
,
S.
, and
Anderson
,
R. B.
, 1974, “
Thermal Aspects of Grinding: Part I—Energy Partition
,”
ASME J. Eng. Ind.
0022-0817,
96
, pp.
1177
1183
.
37.
Furukawa
,
Y.
, and
Ohishi
,
S.
, 1984, “
Adaptive Control of Creep Feed Grinding to Avoid Workpiece Burn
,”
Proceedings of the 5th International Conference on Production Engineering
, Tokyo, Japan,
Japan Society of Precision Engineering
, pp.
64
69
.
38.
Kirk
,
G. K.
, 1976, “
Wheel Sharpness Measurement for Force Prediction in Grinding
,”
Wear
0043-1648,
160
, pp.
317
323
.
39.
Calcev
,
G.
,
Gorez
,
R.
, and
Neyer
,
M. De.
, 1998, “
Passivity Approach to Fuzzy Control Systems
,”
Automatica
0005-1098,
34
(
3
), pp.
339
344
.
40.
Calcev
,
G.
, 1996, “
A Passivity Result for Fuzzy Control Systems
,”
Proceedings of the 35th Conference on Decision and Control
, Kobe, Japan, Dec. 11–13, pp.
2727
2728
.
You do not currently have access to this content.