This paper addresses robust H control and stabilization of switched linear systems with norm-bounded time-varying uncertainties. First, based on multiple Lyapunov functions methodology, a sufficient condition is derived for robust stabilization with a prescribed disturbance attenuation level γ only by employing state-dependent switching rules. Then the robust H control synthesis via switched state feedback is studied. It is shown that a switched state-feedback controller can be designed to stabilize the switched systems with an H-norm bound if a matrix inequality based condition is feasible. This condition can be dealt with as linear matrix inequalities (LMIs) provided that the associated parameters are selected in advance. All the results presented can be regarded as an extension of some existing results for both switched and nonswitched systems.

1.
1997, “
Control Using Logic-based Switching
,”
Lecture Notes in Control and Information Science
,
A. S.
Morse
, ed.,
Springer
, New York, p.
222
.
2.
Wong
,
W. S.
, and
Brockett
,
R. W.
, 1997, “
Systems With Finite Communication Bandwidth Constraints: State Estimation Problems
,”
IEEE Trans. Autom. Control
0018-9286,
42
, pp.
1294
1299
.
3.
Sun
,
Z.
, and
Ge
,
S. S.
, 2005, “
Analysis and Synthesis of Switched Linear Control Systems
,”
Automatica
0005-1098,
41
(
2
), pp.
181
195
.
4.
Liberzon
,
D.
, and
Morse
,
A. S.
, 1999, “
Basic Problems in Stability and Design of Switched Systems
,”
IEEE Control Syst. Mag.
0272-1708,
19
(
5
), pp.
59
70
.
5.
DeCarlo
,
R. A.
,
Branicky
,
M. S.
,
Pettersson
,
S.
, and
Lennartson
,
B.
, 2000, “
Perspectives and Results on the Stability and Stabilizability of Hybrid Systems
,”
Proc. IEEE
0018-9219,
88
(
7
), pp.
1069
1082
.
6.
Wicks
,
M. A.
,
Peleties
,
P.
, and
DeCarlo
,
R. A.
, 1994, “
Construction of Piecewise Lyapunov Functions for Stabilizing Switched Systems
,”
Proceedings of the 33rd Conference on Decision and Control
,
Lake Buena Vista
, December, pp.
3492
3497
.
7.
Feron
,
E.
, 1996, “
Quadratic Stabilizability of Switched Systems via State and Output Feedback
,” MIT Technical Report CICS-P-468.
8.
Zhao
,
J.
, and
Dimirovski
,
G. M.
, 2004, “
Quadratic Stability of a Class of Switched Nonlinear Systems
,”
IEEE Trans. Autom. Control
0018-9286,
49
(
4
), pp.
574
578
.
9.
Zhai
,
G.
,
Lin
,
H.
, and
Antsaklis
,
P. J.
2003, “
Quadratic Stabilizability of Switched Linear Systems With Polytopic Uncertainties
,”
Int. J. Control
0020-7179,
76
(
7
), pp.
747
753
.
10.
Shorten
,
R. N.
,
Narendra
,
K. S.
, and
Mason
,
O.
, 2003, “
A Result on Common Quadratic Lyapunov Functions
,”
IEEE Trans. Autom. Control
0018-9286,
48
(
1
), pp.
110
113
.
11.
Cheng
,
D.
,
Guo
,
L.
, and
Huang
,
J.
, 2003, “
On Quadratic Lyapunon Functions
,”
IEEE Trans. Autom. Control
0018-9286,
48
(
5
), pp.
885
890
.
12.
Hu
,
B.
,
Zhai
,
G.
, and
Michel
,
A. N.
, 2002, “
Common Quadratic Lyapunov-like Function With Associated Switching Regions for Two Unstable Second-order LTI Systems
,”
Int. J. Control
0020-7179,
75
(
14
), pp.
1127
1135
.
13.
Branicky
,
M. S.
, 1998, “
Multiple Lyapunov Functions and Other Analysis Tools for Switched and Hybrid Systems
,”
IEEE Trans. Autom. Control
0018-9286,
43
(
4
), pp.
475
482
.
14.
Johansson
,
M.
, and
Rantzer
,
A.
, 1998, “
Computation of Piecewise Quadratic Lyapunov Functions for Hybrid Systems
,”
IEEE Trans. Autom. Control
0018-9286,
43
(
4
), pp.
555
559
.
15.
Pettersson
,
S.
, and
Lennartson
,
B.
, 2002, “
Hybrid System Stability and Robustness Verification Using Linear Matrix Inequalities
,”
Int. J. Control
0020-7179,
75
, pp.
1335
1355
.
16.
Sun
,
Z.
, 2004, “
A Robust Stabilizing Law for Switched Linear Systems
,”
Int. J. Control
0020-7179,
77
(
4
), pp.
389
398
.
17.
Hespanha
,
J. P.
, 2003, “
Root-Mean-Square Gains of Switched Linear Systems
,”
IEEE Trans. Autom. Control
0018-9286,
48
(
11
), pp.
2040
2045
.
18.
Zhai
,
G.
,
Hu
,
B.
,
Yasuda
,
K.
, and
Michel
,
A. N.
, 2001, “
Disturbance Attenuation Properties of Time-Controlled Switched Systems
,”
J. Franklin Inst.
0016-0032,
338
, pp.
765
779
.
19.
Nie
,
H.
, and
Zhao
,
J.
, 2003, “
Hybrid State Feedback H∞ Robust Control for a Class of Linear Systems With Time-varying Norm-Bounded Uncertainty
,”
Proceedings of the American Control Conference
,
Denver
, Colorado, pp.
3608
3613
.
20.
Hara
,
S.
,
Anderson
,
B. D.O.
, and
Fujioka
,
H.
, 1994, “
Relating H2 and H∞ Norm Bounds for Hybrid Systems
,”
Proceedings of the 33rd IEEE Conference on Decision and Control
,
1
, pp.
724
729
.
21.
Lall
,
S. G.
, and
Dullerud
,
G. E.
, 1997, “
H∞ Synthesis for Multi-rate Hybrid Systems
,”
Proceedings of the 36th IEEE Conference on Decesion and Control
,
3
, pp.
2035
2040
.
22.
Peleties
,
P.
, and
DeCarlo
,
R. A.
, 1991, “
Asymptotic Stability of m-Switched Systems Using Lyapunov-like Functions
,”
Proceedings of the American Control Conference
,
Boston, MA, pp.
1679
1684
.
23.
Ye
,
H.
,
Michel
,
A. N.
, and
Hou
,
L.
, 1998, “
Stability Theory for Hybrid Dynamical Systems
,”
IEEE Trans. Autom. Control
0018-9286,
43
(
4
), pp.
461
474
.
24.
Pettersson
,
S.
, and
Lennartson
,
B.
, 2001, “
Stabilization of Hybrid Systems Using a Min-Projection Strategy
,”
Proceedings of the American Control Conference
,
Arlington, VA, June, pp.
223
228
.
25.
Zhai
,
G.
, and
Chen
,
X.
, 2002, “
Stabilizing Linear Time-Invariant Systems With Finite-State Hybrid Static Output Feedback
,” IEEE International Symposium on Circuits and Systems,
1
, pp.
249
252
.
26.
Khargonekar
,
P. P.
,
Petersen
,
I. R.
, and
Zhou
,
K.
, 2001, “
Robust Stabilization of Uncertain Linear Systems: Quadratic Stabilizability and H∞ Control Theory
,”
IEEE Trans. Autom. Control
0018-9286,
35
, pp.
356
361
.
27.
Doyle
,
J.
,
Glover
,
K.
,
Khargonekar
,
P.
, and
Francis
,
B. A.
, 1989, “
State-Space Solution to Standard H2 and H∞ Control Problems
,”
IEEE Trans. Autom. Control
0018-9286,
34
(
8
), pp.
831
842
.
28.
Petersen
,
I. R.
, 1987, “
A Stabilization Algorithm for a Class of Uncertain Linear Systems
,”
Syst. Control Lett.
0167-6911,
8
, pp.
351
357
.
29.
Boyd
,
S.
,
Ghaoui
,
L. E.
,
Feron
,
E.
, and
Balakrishnan
,
V.
, 1994,
Linear Matrix Inequalities in System and Control Theory
,
SIAM
, Philadelphia.
You do not currently have access to this content.