This paper re-examines the stability of multi-input multi-output (MIMO) control systems designed using sequential MIMO quantitative feedback theory (QFT). In order to establish the results, recursive design equations for the SISO equivalent plants employed in a sequential MIMO QFT design are established. The equations apply to sequential MIMO QFT designs in both the direct plant domain, which employs the elements of plant in the design, and the inverse plant domain, which employs the elements of the plant inverse in the design. Stability theorems that employ necessary and sufficient conditions for robust closed-loop internal stability are developed for sequential MIMO QFT designs in both domains. The theorems and design equations facilitate less conservative designs and improved design transparency.

1.
Yaniv
,
O.
, and
Horowitz
,
I.
, 1986, “
A Quantitative Design Method for MIMO Linear Feedback Systems Having Uncertain Plants
,”
Int. J. Control
0020-7179,
43
, pp.
401
421
.
2.
Yaniv
,
O.
, 1999,
Quantitative Feedback Design of Linear and Nonlinear Control Systems
,
Kluwer Academic Publishers
, Norwell, MA.
3.
Horowitz
,
I.
, 1979, “
Quantitative Synthesis of Uncertain Multi Input-Output Feedback Systems
,”
Int. J. Control
0020-7179,
30
(
1
), pp.
81
106
.
4.
Jayasuriya
,
S.
, and
Zhao
,
Y.
, 1994, “
Robust Stability of Plants with Mixed Uncertainties and Quantitative Feedback Theory
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
116
, pp.
10
16
.
5.
Park
,
M. S.
,
Chait
,
Y.
, and
Steinbuch
,
M.
, 1994, “
A New Approach to Multivariable Quantitative Feedback Theory: Theoretical and Experimental Results
,”
Proceedings of the American Control Conference
,
Baltimore
, Maryland, June 29–July 1, pp.
340
345
.
6.
Doyle
,
J. C.
, 1986, “
Quantitative Feedback Theory (QFT) and Robust Control
,”
Proceedings of the American Control Conference
,
Seattle
, WA, pp.
1691
1698
.
7.
Yaniv
,
O.
, and
Horowitz
,
I.
, 1987, “
Quantitative Feedback Theory—reply to criticisms
,”
Int. J. Control
0020-7179,
46
, pp.
945
962
.
8.
Horowitz
,
I.
, 1993,
Quantitative Feedback Design Theory (QFT)
,
QFT Publications
, Boulder, Colorado, Chap. 14.
9.
Zhou
,
K.
,
Doyle
,
J. C.
, and
Glover
,
K.
, 1996,
Robust and Optimal Control
,
Prentice Hall
, Upper Saddle River, NJ.
10.
De Bedout
,
J. M.
, and
Franchek
,
M.
, 2002, “
Stability Conditions For the Sequential Design of Nondiagonal Feedback Controllers
,”
Int. J. Control
0020-7179,
75
(
12
), pp.
910
922
.
11.
Yaniv
,
O.
and
Schwartz
,
B.
, 1991, “
Criterion for Loop Stability in MIMO Feedback Systems Having an Uncertain Plant
,”
Int. J. Control
0020-7179,
53
, pp.
527
539
.
12.
Holt
,
B. R.
, and
Morari
,
N.
, 1985, “
Design of Resilient Processing Plants—VI. The Effect of Right-Half-Plane Zeros on Dynamic Resilience
,”
Chem. Eng. Sci.
0009-2509,
40
, pp.
59
74
.
13.
Wang
,
S. H.
, and
Davison
,
E. J.
, 1973, “
On the Stabilization of Decentralized Control Systems
,”
IEEE Trans. Autom. Control
0018-9286,
AC-18
, pp.
473
478
.
14.
Rosenbrock
,
H. H.
, 1972, “
The Stability of Multivariable Systems
,”
IEEE Trans. Autom. Control
0018-9286,
AC-17
, pp.
105
107
.
15.
Mayne
,
D. Q.
, 1979, “
Sequential Design of Linear Multivariable Systems
,”
Proc. IEEE
0018-9219,
126
, pp.
568
572
.
You do not currently have access to this content.