Abstract

The decentralized output feedback control problem for a class of large-scale interconnected nonlinear systems is considered. The nonlinear interconnection function of each subsystem is assumed to satisfy a quadratic constraint on the entire state of the large-scale system. A decentralized estimated state feedback controller and a decentralized observer are designed for each subsystem. Sufficient conditions, for each subsystem, under which the proposed controller and observer can achieve exponential stabilization of the overall large-scale system are developed. Simulation results on a numerical example are given to verify the proposed design.

1.
D. D.
Siljak
, 1991,
Decentralized Control of Complex Systems
,
Academic Press
, New York.
2.
J. N. R.
Sandell
,
P.
Varaiya
,
M.
Athans
, and
M. G.
Safanov
, 1978, “
Survey of decentralized control methods for large scale systems
,”
IEEE Trans. Autom. Control
0018-9286,
AC-23
, pp.
108
128
.
3.
M.
Ikeda
, 1989, “
Decentralized control of large scale systems
,”
Three Decades of Mathematical System Theory
,
Springer-Verlag
, pp.
219
242
.
4.
S. Y.
Zhang
,
K.
Mizukami
, and
H. S.
Wu
, 1996, “
Decentralized robust control for a class of uncertain large-scale interconnected nonlinear dynamical systems
,”
J. Optim. Theory Appl.
0022-3239,
91
, pp.
235
256
.
5.
Z.
Gong
, 1995, “
Decentralized robust control of uncertain interconnected systems with prescribed degree of exponential convergence
,”
IEEE Trans. Autom. Control
0018-9286,
40
, pp.
704
707
.
6.
D. D.
Siljak
and
D. M.
Stipanovic
, 2000, “
Robust stabilization of nonlinear systems: The LMI approach
,”
Mathematical Problems in Engineering
,
6
, pp.
461
493
.
7.
N.
Viswanadham
and
A.
Ramakrishna
, 1982, “
Decentralized estimation and control for interconnected systems
,”
Large Scale Syst.
0165-0777,
3
, pp.
255
266
.
8.
C.
Wen
, 1994, “
Decentralized adaptive regulation
,”
IEEE Trans. Autom. Control
0018-9286,
39
, pp.
2163
2166
.
9.
N.
Abdel-Jabbar
,
C.
Kravaris
, and
B.
Carnahan
, 1998, “
A partially decentralized state observer and its parallel computer implementation
,”
Ind. Eng. Chem. Res.
0888-5885,
37
, pp.
2741
2760
.
10.
M.
Aldeen
and
J. F.
Marsh
, 1999, “
Decentralised observer-based control scheme for interconnected dynamical systems with unknown inputs
,”
IEE Proc.: Control Theory Appl.
1350-2379,
146
, pp.
349
357
.
11.
Z. P.
Jiang
, 2000, “
Decentralized and adaptive nonlinear tracking of large-scale systems via output feedback
,”
IEEE Trans. Autom. Control
0018-9286,
45
, pp.
2122
2128
.
12.
K. S.
Narendra
and
N. O.
Oleng
, 2002, “
Exact output tracking in decentralized adaptive control systems
,”
IEEE Trans. Autom. Control
0018-9286,
47
, pp.
390
395
.
13.
A. N.
Atassi
and
H. K.
Khalil
, 1999, “
A separation principle for the stabilization of a class of nonlinear systems
,”
IEEE Trans. Autom. Control
0018-9286,
44
, pp.
1672
1687
.
14.
D. D.
Siljak
and
D. M.
Stipanovic
, 2001, “
Autonomous decentralized control
,” in
Proceedings of the Internaional Mechanical Engineering Congress and Exposition
, (Nashville, TN).
15.
R.
Eising
, 1984, “
Between controllable and uncontrollable
,”
Syst. Control Lett.
0167-6911,
4
, pp.
263
264
.
16.
D. L.
Boley
and
W. S.
Lu
, 1986, “
Measuring how far a controllable system is from an uncontrollable one
,”
IEEE Trans. Autom. Control
0018-9286,
31
, pp.
249
251
.
17.
M.
Wicks
and
R. A.
DeCarlo
, 1991, “
Computing the distance to an uncontrollable system
,”
IEEE Trans. Autom. Control
0018-9286,
36
, pp.
39
49
.
18.
D. D.
Siljak
,
D. M.
Stipanovic
, and
A. I.
Zecevic
, 2002, “
Robust decentralized turbine/governor control using linear matrix inequalities
,”
IEEE Trans. Power Syst.
0885-8950,
17
, pp.
715
722
.
19.
C.
Aboky
,
G.
Sallet
, and
J. C.
Vivalda
, 2002, “
Observers for Lipschitz non-linear systems
,”
Int. J. Control
0020-7179,
75
, pp.
204
212
.
20.
R.
Rajamani
, 1998, “
Observers for Lipschitz nonlinear systems
,”
IEEE Trans. Autom. Control
0018-9286,
43
, pp.
397
401
.
21.
S.
Derese
and
E.
Noldus
, 1980, “
Design linear feedback law for bilinear systems
,”
Int. J. Control
0020-7179,
31
, pp.
219
237
.
22.
T.
Kailath
, 1980,
Linear Systems
,
Prentice-Hall, Inc.
, Englewood Cliffs, N.J..
23.
W. M.
Wonham
, 1968, “
On a matrix Riccati equation of stochastic control
,”
SIAM J. Control
0036-1402,
6
, pp.
681
698
.
You do not currently have access to this content.