This paper presents a model of sound propagation in a duct, for the purpose of active noise control. A physical model generally different from those explored in much of the literature is derived, with non-constant acoustic load impedance at the one end, and a coupled disturbance loudspeaker model at the other end. Experimental results are presented which validate the derived transfer function.
Issue Section:
Technical Papers
1.
Elliot
, S. J.
, and Nelson
, P. A.
, 1993
, “Active noise control
,” IEEE Signal Process. Mag.
, 10
, pp. 12
–35
.2.
Seto, W. W. 1972, Theory and Problems of Acoustics, McGraw-Hill, Inc., New York.
3.
Hong
, J.
, Akers
, J. C.
, Venugopal
, R.
, Lee
, M.-N.
, Sparks
, A. G.
, Washabaugh
, P. D.
, and Bernstein
, D. S.
, 1996
, “Modeling, identification, and feed-back control of noise in an acoustic duct
,” IEEE Trans. Control Syst. Technol.
, 4
, pp. 283
–291
.4.
Hull
, A. J.
, Radcliffe
, C. J.
, and Southward
, S. C.
, 1993
, “Global active noise control of a one-dimensional acoustic duct using a feedback controller
,” ASME J. Dyn. Syst., Meas., Control
, 115
, pp. 488
–494
.5.
Hull
, A. J.
, and Radcliffe
, C. J.
, 1991
, “An eigenvalue based acoustic impedance measurement technique
,” ASME J. Vibr. Acoust.
, 113
, pp. 250
–254
.6.
Hull
, A. J.
, Radcliffe
, C. J.
, and MacCluer
, C. R.
, 1991
, “State estimation of the nonself-adjoint acoustic duct system
,” ASME J. Dyn. Syst., Meas., Control
, 113
, pp. 122
–126
.7.
Morris
, K. A.
, 1998
, “Noise reduction in ducts achievable by point control
,” ASME J. Dyn. Syst., Meas., Control
, 120
, pp. 216
–223
.8.
Spiekermann
, C. E.
, and Radcliffe
, C. J.
, 1988
, “Decomposing one-dimensional acoustic pressure response into propagating and standing waves
,” J. Acoust. Soc. Am.
, 84
(4
), pp. 1536
–1541
.9.
Levine
, H.
, and Schwinger
, J.
, 1948
, “On the radiation of sound from an unflanged circular pipe
,” Phys. Rev.
, 73
, pp. 383
–406
.10.
Hu
, J. S.
, 1995
, “Active sound attenuation in finite-length ducts using close-form transfer function models
,” ASME J. Dyn. Syst., Meas., Control
, 117
, pp. 143
–154
.11.
Birdsong
, C.
, and Radcliffe
, C. R.
, 1999
, “A compensated acoustic actuator for systems with strong dynamic pressure coupling
,” ASME J. Vibr. Acoust.
, 121
, pp. 89
–94
.12.
Lane
, S. A.
, and Clark
, R. L.
, 1998
, “Improving loudspeaker performance for active noise control applications
,” J. Audio Eng. Soc.
, 46
, pp. 508
–518
.13.
Morse, P. M., and Feshbach, H. 1953, Methods of Theoretical Physics, McGraw-Hill, Inc., New York.
14.
Beranek, L. L., 1986, Acoustics, American Institute of Physics, Inc., New York.
15.
Pierce, A. D. 1981, Acoustics: An Introduction to Its Physical Principles and Applications, McGraw-Hill, New York.
16.
Morse, P. M., and Ingard, K. N., 1986, Theoretical Acoustics, Princeton University Press.
17.
Pazy, A. 1983, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York.
18.
Obasi, E. E., 2002, An Improved One-Dimensional Duct Model and Robust H∞ Controller Design for Active Noise Control, M. Math. Thesis, University of Waterloo.
19.
Zimmer, B. 1999, An Improved One-Dimensional Model for Active Noise Control, M. Math. Thesis, University of Waterloo.
Copyright © 2003
by ASME
You do not currently have access to this content.