This paper presents a model of sound propagation in a duct, for the purpose of active noise control. A physical model generally different from those explored in much of the literature is derived, with non-constant acoustic load impedance at the one end, and a coupled disturbance loudspeaker model at the other end. Experimental results are presented which validate the derived transfer function.

1.
Elliot
,
S. J.
, and
Nelson
,
P. A.
,
1993
, “
Active noise control
,”
IEEE Signal Process. Mag.
,
10
, pp.
12
35
.
2.
Seto, W. W. 1972, Theory and Problems of Acoustics, McGraw-Hill, Inc., New York.
3.
Hong
,
J.
,
Akers
,
J. C.
,
Venugopal
,
R.
,
Lee
,
M.-N.
,
Sparks
,
A. G.
,
Washabaugh
,
P. D.
, and
Bernstein
,
D. S.
,
1996
, “
Modeling, identification, and feed-back control of noise in an acoustic duct
,”
IEEE Trans. Control Syst. Technol.
,
4
, pp.
283
291
.
4.
Hull
,
A. J.
,
Radcliffe
,
C. J.
, and
Southward
,
S. C.
,
1993
, “
Global active noise control of a one-dimensional acoustic duct using a feedback controller
,”
ASME J. Dyn. Syst., Meas., Control
,
115
, pp.
488
494
.
5.
Hull
,
A. J.
, and
Radcliffe
,
C. J.
,
1991
, “
An eigenvalue based acoustic impedance measurement technique
,”
ASME J. Vibr. Acoust.
,
113
, pp.
250
254
.
6.
Hull
,
A. J.
,
Radcliffe
,
C. J.
, and
MacCluer
,
C. R.
,
1991
, “
State estimation of the nonself-adjoint acoustic duct system
,”
ASME J. Dyn. Syst., Meas., Control
,
113
, pp.
122
126
.
7.
Morris
,
K. A.
,
1998
, “
Noise reduction in ducts achievable by point control
,”
ASME J. Dyn. Syst., Meas., Control
,
120
, pp.
216
223
.
8.
Spiekermann
,
C. E.
, and
Radcliffe
,
C. J.
,
1988
, “
Decomposing one-dimensional acoustic pressure response into propagating and standing waves
,”
J. Acoust. Soc. Am.
,
84
(
4
), pp.
1536
1541
.
9.
Levine
,
H.
, and
Schwinger
,
J.
,
1948
, “
On the radiation of sound from an unflanged circular pipe
,”
Phys. Rev.
,
73
, pp.
383
406
.
10.
Hu
,
J. S.
,
1995
, “
Active sound attenuation in finite-length ducts using close-form transfer function models
,”
ASME J. Dyn. Syst., Meas., Control
,
117
, pp.
143
154
.
11.
Birdsong
,
C.
, and
Radcliffe
,
C. R.
,
1999
, “
A compensated acoustic actuator for systems with strong dynamic pressure coupling
,”
ASME J. Vibr. Acoust.
,
121
, pp.
89
94
.
12.
Lane
,
S. A.
, and
Clark
,
R. L.
,
1998
, “
Improving loudspeaker performance for active noise control applications
,”
J. Audio Eng. Soc.
,
46
, pp.
508
518
.
13.
Morse, P. M., and Feshbach, H. 1953, Methods of Theoretical Physics, McGraw-Hill, Inc., New York.
14.
Beranek, L. L., 1986, Acoustics, American Institute of Physics, Inc., New York.
15.
Pierce, A. D. 1981, Acoustics: An Introduction to Its Physical Principles and Applications, McGraw-Hill, New York.
16.
Morse, P. M., and Ingard, K. N., 1986, Theoretical Acoustics, Princeton University Press.
17.
Pazy, A. 1983, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York.
18.
Obasi, E. E., 2002, An Improved One-Dimensional Duct Model and Robust H∞ Controller Design for Active Noise Control, M. Math. Thesis, University of Waterloo.
19.
Zimmer, B. 1999, An Improved One-Dimensional Model for Active Noise Control, M. Math. Thesis, University of Waterloo.
You do not currently have access to this content.