In this paper, we developed a detailed mathematical model of dual action pneumatic actuators controlled with proportional spool valves. Effects of nonlinear flow through the valve, air compressibility in cylinder chambers, leakage between chambers, end of stroke inactive volume, and time delay and attenuation in the pneumatic lines were carefully considered. We performed system identification, numerical simulation, and model validation experiments for two types of air cylinders and different connecting tubes length. The mathematical model of the present article is used in a sequel article to develop high performance nonlinear pneumatic force controllers. [S0022-0434(00)00503-7]

1.
Shearer
,
J. E.
,
1956
, “
Study of Pneumatic Process in the Continuous Control of Motion with Compressed Air-I, II
,”
Trans. ASME
, Feb., pp.
233
249
.
2.
Burrows, C. R., and Webb, C. R., 1966, “Use of the Root Loci in Design of Pneumatic Servo-Motors,” Control, Aug., pp. 423–427.
3.
Liu
,
S.
, and
Bobrow
,
J. E.
,
1988
, “
An Analysis of a Pneumatic Servo System and Its Application to a Computer-Controlled Robot
,”
ASME J. Dyn. Syst., Meas., Control
,
110
, pp.
228
235
.
4.
Bobrow
,
J. E.
, and
Jabbari
,
F.
,
1991
, “
Adaptive Pneumatic Force Actuation and Position Control
,”
ASME J. Dyn. Syst., Meas., Control
,
113
, pp.
267
272
.
5.
McDonell
,
B. W.
, and
Bobrow
,
J. E.
,
1993
, “
Adaptive Traking Control of an Air Powered Robot Actuator
,”
ASME J. Dyn. Syst., Meas., Control
,
115
, pp.
427
433
.
6.
Arun
,
P. K.
,
Mishra
,
J. K.
, and
Radke
,
M. G.
,
1994
, “
Reduced Order Sliding Mode Control for Pneumatic Actuator
,”
IEEE Trans. Control Syst. Technol.
,
2
, No.
3
, pp.
271
276
.
7.
Tang
,
J.
, and
Walker
,
G.
,
1995
, “
Variable Structure Control of a Pneumatic Actuator
,”
Trans. ASME J. Dyn. Syst. Meas.
,
117
, pp.
88
92
.
8.
Ben-Dov
,
D.
, and
Salcudean
,
S. E.
,
1995
, “
A Force-Controlled Pneumatic Actuator
,”
IEEE Trans. Rob. Autom.
,
11
, No.
6
, pp.
906
911
.
9.
Richard
,
E.
, and
Scavarda
,
S.
,
1996
, “
Comparison Between Linear and Nonlinear Control of an Electropneumatic Servodrive
,”
ASME J. Dyn. Syst., Meas., Control
,
118
, pp.
245
118
.
10.
Al-Ibrahim, A. M., and Otis, D. R., 1992, “Transient Air Temperature and Pressure Measurements During the Charging and Discharging Processes of an Actuating Pneumatic Cylinder,” Proceedings of the 45th National Conference on Fluid Power.
11.
Hullender, D. A., and Woods, R. L., 1985, “Modeling of Fluid Control Components,” Proceedings of the First Conference on Fluid Control and Measurement, FLUCOME ’85, Pergamon Press, Tokyo, London.
12.
Schuder
,
C. B.
, and
Binder
,
R. C.
,
1959
, “
The Response of Pneumatic Transmission Lines to Step Inputs
,”
ASME J. Basic Eng.
,
81
, pp.
578
584
.
13.
Hougen
,
J. O.
,
Martin
,
O. R.
, and
Walsh
,
R. A.
,
1963
, “
Dynamics of Pneumatic Transmission Lines
,”
Energy Convers. Manage.
,
35
, No.
1
, pp.
61
77
.
14.
Andersen, B., 1967, The Analysis and Design of Pneumatic Systems, Wiley, New York.
15.
Whitmore, S. A., Lindsey, W. T., Curry, R. E., and Gilyard, G. B., 1990, “Experimental Characterization of the Effects of Pneumatic Tubing on Unsteady Pressure Measurements,” NASA Technical Memorandum 4171, pp. 1–26.
16.
Elmadbouly
,
E. E.
, and
Abdulsadek
,
N. M.
,
1994
, “
Modeling, Simulation and Sensitivity Analysis of a Straight Pneumatic Pipeline
,”
Energy Convers. Manage.
,
35
, No.
1
, pp.
61
77
.
17.
Chester, C. R., 1971, Techniques in Partial Differential Equations, McGraw-Hill, New York.
18.
Munson, B. R., Young, D. F., and Okiishi, T. H., 1990, Fundamentals of Fluid Mechanics, Wiley, New York.
You do not currently have access to this content.