The disturbance rejection with simultaneous input-output linearization and decoupling problem of nonsquare nonlinear systems via restricted state feedback is investigated in this paper. The problem is treated on the basis of an algebraic approach whose main feature is that it reduces the determination of the admissible state feedback control laws to the solution of an algebraic and a first order partial differential systems of equations. Verifiable necessary and sufficient conditions of algebraic nature based on these systems of equations are established for the solvability of the aforementioned problem. Moreover, an explicit expression for a special admissible restricted state feedback controller is analytically derived. [S0022-0434(00)02101-8]

1.
Falb
,
P. L.
, and
Wolovich
,
W. A.
,
1967
, “
Decoupling in the Design and Synthesis of Multivariable Control Systems
,”
IEEE Trans. Autom. Control
,
AC-12
, pp.
651
669
.
2.
Porter
,
W. A.
,
1969
, “
Decoupling of and Inverses for Time-Varying Linear Systems
,”
IEEE Trans. Autom. Control
,
AC-14
, pp.
378
380
.
3.
Porter
,
W. A.
,
1970
, “
Diagonalization and Inverses for Nonlinear Systems
,”
Int. J. Control
,
10
, pp.
252
264
.
4.
Ha
,
I. J.
, and
Gilbert
,
E. G.
,
1986
, “
A Complete Characterization of Decoupling Control Laws for a General Class of Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
AC-31
, pp.
823
830
.
5.
Xia
,
X.
,
1993
, “
Parametrization of Decoupling Control Laws for Affine Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
AC-38
, pp.
916
928
.
6.
Isidori, A., 1996, Nonlinear Control Systems: An Introduction, 3rd Ed., Springer-Verlag, Berlin.
7.
Tsirikos, A. S., 1996, “Contribution to the Development of New Techniques for the Analysis and Design of Linear and Nonlinear Systems,” Ph.D. thesis, National Technical University of Athens, Department of Electrical and Computer Engineering, Athens.
8.
Morgan
,
B. S.
,
1964
, “
The Synthesis of Linear Multivariable Systems by State-Variable Feedback
,”
IEEE Trans. Autom. Control
,
AC-9
, pp.
405
411
.
9.
Suda, N., and Umahashi, K., 1984, “Decoupling of Nonsquare Systems: A Necessary and Sufficient Condition in Terms of Infinite Zeros,” Proc. 9th IFAC World Congress, Budapest, 1, pp. 88–93.
10.
Descusse, J., Lafay, J. F., and Malabre, M., 1986, “A Survey on Morgan’s Problem,” Proc. 25th IEEE Conf. Decision Contr. (CDC), 2, pp. 1289–1294, Athens, Greece.
11.
Descusse
,
J.
,
Lafay
,
J. F.
, and
Malabre
,
M.
,
1988
, “
Solution to Morgan’s Problem
,”
IEEE Trans. Autom. Control
,
AC-33
, pp.
732
739
.
12.
Commault
,
C.
,
Descusse
,
J.
,
Dion
,
J. M.
,
Lafay
,
J. F.
, and
Malabre
,
M.
,
1986
, “
New decoupling invariants: The essential orders
,”
Int. J. Control
,
44
, pp.
689
700
.
13.
Herrera
,
H. A. N.
, and
Lafay
,
J. F.
,
1993
, “
New Results about Morgan’s Problem
,”
IEEE Trans. Autom. Control
,
AC-38
, pp.
1834
1838
.
14.
Glumineau
,
A.
, and
Moog
,
C. H.
,
1992
, “
Nonlinear Morgan’s Problem: Case of p+1 Inputs and p Outputs
,”
IEEE Trans. Autom. Control
,
AC-37
, pp.
1067
1072
.
15.
Kamiyama
,
S.
, and
Furuta
,
K.
,
1976
, “
Decoupling by Restricted State Feedback
,”
IEEE Trans. Autom. Control
,
AC-21
, pp.
413
415
.
16.
Descusse
,
J.
,
Lafay
,
J. F.
, and
Kucera
,
V.
,
1984
, “
Decoupling by Restricted State Feedback: The General Case
,”
IEEE Trans. Autom. Control
,
AC-29
, pp.
79
81
.
17.
Arvanitis
,
K. G.
,
1997
, “
Simultaneous Uniform Disturbance Localization and Decoupling of Nonsquare Linear Time-Dependent Analytic Systems via Restricted State Feedback
,”
IMA J. Math. Control Inf.
,
14
, pp.
371
383
.
18.
Arvanitis
,
K. G.
,
1998
, “
Uniform Decoupling of Nonsquare Linear Time-Varying Analytic Systems via Restricted Static State Feedback
,”
J. Franklin Inst.
,
335B
, pp.
359
373
.
19.
Tarn, T. J., and Zhan, W., 1991, “Input-Output Decoupling and Linearization via restricted Static State Feedback,” Proc. 11th IFAC World Congress, Tallin, Estonia, 3, pp. 287–292.
20.
Wonham, W. M., 1979, Linear Multivariable Control: A Geometric Approach, Springer-Verlag, New York.
21.
Isidori
,
A.
,
Krener
,
A. J.
,
Gori-Giorgi
,
C.
, and
Monaco
,
S.
,
1981
, “
Nonlinear Decoupling via Feedback: A Differential Geometric Approach
,”
IEEE Trans. Autom. Control
,
AC-26
, pp.
331
345
.
22.
Hirschorn
,
R. M.
,
1981
, “
(A, B)-Invariant Distributions and Disturbance Decoupling of Nonlinear Systems
,”
SIAM J. Control Optim.
,
19
, pp.
1
19
.
23.
Nijmeijer
,
H.
, and
Van der Schaft
,
A.
,
1983
, “
The Disturbance Decoupling Problem for Nonlinear Control Systems
,”
IEEE Trans. Autom. Control
,
AC-28
, pp.
331
345
.
24.
Krener
,
A. J.
,
1985
, “
(Adf, g), (adf, g) and Locally (adf, g) Invariant and Controllability Distributions
,”
SIAM J. Control Optim.
,
23
, pp.
523
549
.
25.
Huijberts
,
H.
,
1992
, “
A Nonregular Solution to the Nonlinear Dynamic Disturbance Decoupling Problem with an Application to a Complete Solution of the Nonlinear Model Matching Problem
,”
SIAM J. Control Optim.
,
30
, pp.
350
366
.
26.
Arvanitis
,
K. G.
,
1994
, “
Uniform Disturbance Localization with Simultaneous Uniform Decoupling for Linear Time-Varying Analytic Systems
,”
Int. J. Syst. Sci.
,
25
, pp.
1679
1694
.
27.
Narikiyo
,
V.
, and
Izumi
,
T.
,
1991
, “
On model feedback control for robot manipulators
,”
ASME J. Dyn. Syst., Meas., Control
,
113
, pp.
371
378
.
28.
Wie
,
B.
,
Byun
,
K. W.
, and
Warren
,
V. W.
,
1989
, “
New approach to attitude/momentum control for the space station
,”
AIAA J. Guidance, Contr. Dyn.
,
12
, pp.
714
722
.
You do not currently have access to this content.