This paper presents a discrete-time adaptive controller, which incorporates internal model principle for asymptotic tracking performance of systems with parametric uncertainties, unmodeled dynamics and disturbances. Global stability and tracking performance of the adaptive system are derived under conditions on the system’s stabilizability and bounds of noise and unmodeled dynamics. It is shown that asymptotic tracking can be achieved while the unmodeled dynamics and disturbances exist. The adaptive algorithm is applied to an electrohydraulic servo system for periodic trajectory tracking and disturbance rejection. Experimental results based on an eighth-order adaptive system updated at 2560 Hz demonstrate the adaptive system’s ability in high bandwidth tracking performance under effects of system variations and finite word length real-time computation. [S0022-0434(00)03301-3]

1.
Francis
,
B. A.
, and
Wonham
,
W. M.
,
1976
, “
The Internal Model Principle of Control Theory
,”
Automatica
,
12
, No.
5
, pp.
457
465
.
2.
Hara
,
S.
,
Yamamoto
,
Y.
,
Omata
,
T.
, and
Nakano
,
M.
,
1988
, “
Repetitive Control Systems: A New Type Servo System for Periodic Exogenous Signals
,”
IEEE Trans. Autom. Control.
,
AC-31
, No.
2
, pp.
127
133
.
3.
Tomizuka
,
M.
,
Tsao
,
T-C.
, and
Chew
,
K. K.
,
1989
, “
Analysis and Synthesis of Discrete-Time Repetitive Controllers
,”
ASME J. Dyn. Syst., Meas., Control
,
111
, pp.
353
358
.
4.
Tsao, T-C., Tomizuka, M., 1988, “Adaptive and Repetitive Digital Control Algorithms for Noncircular Machining,” Proceedings of the American Control Conference, Atlanta, GA, pp. 115–120.
5.
Tsao
,
T-C.
, and
Tomizuka
,
M.
,
1994
, “
Robust Adaptive and Repetitive Digital Control and Application to Hydraulic Servo for Noncircular Machining
,”
ASME J. Dyn. Syst., Meas., Control
,
116
, pp.
24
32
.
6.
Kim, D. H., and Tsao, Tsu-Chin, 1997, “An Improved Linearized Model for Electrohydraulic Servovalves and its Usage for Robust Performance Control System Design,” Proceedings of the American Control Conference, Albuquerque, NM, pp. 3807–3808.
7.
Kim, D. H., and Tsao, Tsu-Chin, 1997, “Robust Performance Control of Electrohydraulic Actuators for Camshaft Machining,” ASME publication FPST-Vol. 4/DSC-Vol. 63, Fluid Power Systems and Technology: Collected Papers.
8.
Finney
,
J. M.
,
de Pennington
,
A.
,
Bloor
,
M. S.
, and
Gill
,
G. S.
,
1985
, “
A Pole-Assignment Controller for an Electro-hydraulic Cylinder Drive
,”
ASME J. Dyn. Syst., Meas., Control
,
107
, pp.
145
150
.
9.
Bobrow
,
J. E.
, and
Lum
,
K.
,
1996
, “
Adaptive, High Bandwidth Control of a Hydraulic Actuator
,”
ASME J. Dyn. Syst., Meas., Control
,
118
, pp.
714
720
.
10.
Plummer
,
A. R.
, and
Vaughan
,
N. D.
,
1996
, “
Robust Adaptive Control for Hydraulic Servosystems
,”
ASME J. Dyn. Syst., Meas., Control
,
118
, pp.
237
244
.
11.
Elliott, H., and Goodwin, G. C., 1984, “Adaptive Implementation of the Internal Model Principle,” Proceedings of the 23rd IEEE Conference on Decision and Control, pp. 1292–1297.
12.
Palaniswami, M., and Goodwin, G. C., 1987, “An Adaptive Implementation of the Internal Model Principle,” Proceedings of the 7th American Control Conference, Minneapolis, MN, pp. 600–605.
13.
Palaniswami, M., and Goodwin, G. C., 1988, “Disturbance Rejection in Adaptive Control of Industrial Process,” Proceedings of the 14th IEEE Industrial Electronics Society Conference, Singapore, pp. 290–296.
14.
Feng, G., and Palaniwami, 1990, “An Stable Adaptive Implementation of Internal Model Principle,” Proceedings of the 29th IEEE Conference on Decision and Control, Honolulu, HI, pp. 3241–3246.
15.
Middleton
,
R. H.
,
Goodwin
,
G. C.
,
Hill
,
D. J.
, and
Mayne
,
D. Q.
,
1988
, “
Design Issues in Adaptive Control
,”
IEEE Trans. Autom. Control.
,
33
, No.
1
, pp.
50
58
.
16.
Kreisselmeier
,
G.
, and
Anderson
,
B. D. O.
,
1986
, “
Robust Model Reference Adaptive Control
,”
IEEE Trans. Autom. Control.
,
AC-31
, No.
2
, pp.
127
133
.
17.
Goodwin, G. C., and Sin, K. S., 1984, Adaptive Filtering Prediction and Control, Prentice-Hall, Englewood Cliffs, NJ.
18.
Leal
,
L. R.
, and
Ortega
,
R.
,
1987
, “
Reformulation of the Parameter Identification Problem for System with Bounded Disturbances
,”
Automatica
,
23
, No.
2
, pp.
247
251
.
19.
Goodwin
,
G. C.
,
Leal
,
L. R.
,
Mayne
,
D. Q.
, and
Middleton
,
R. H.
,
1986
, “
Rapprochement Between Continuous and Discrete Model Reference Adaptive Control
,”
Automatica
,
22
, No.
2
, pp.
199
208
.
20.
Desoer
,
C. A.
,
1970
, “
Slowly Varying Discrete System xi+1=Aixi
,”
Electron. Lett.
,
6
, No.
11
, pp.
339
340
.
21.
Tsao
,
T-C.
, and
Tomizuaka
,
M.
,
1987
, “
Adaptive Zero Phase Error Tracking Algorithm for Digital Control
,”
ASME J. Dyn. Syst., Meas., Control
,
109
, pp.
349
454
.
You do not currently have access to this content.