This paper presents the derivation of a linearized model for flapper-nozzle type two-stage electrohydraulic servovalves from the nonlinear state equations. The coefficients of the linearized model are derived in terms of the valve physical parameters and fluid properties explicitly, and are useful for valve design and sensitivity analysis. When using this model structure to fit experimental frequency response data, the results render closer agreement than when using existing low order linear models. This model also suggests important servovalve dynamic properties such as the nonminimum phase zero and the transfer function relative degree, and how they relate to the valve component arrangement. Because of the small modeling errors over a wide frequency range, a high bandwidth control system can be designed. A robust performance controller is designed and implemented to demonstrate the utility of the model. [S0022-0434(00)03401-8]

1.
Hori
,
N.
,
Pannala
,
A. S.
,
Ukrainetz
,
P. R.
, and
Nikiforuk
,
P. N.
,
1989
, “
Design of an Electrohydraulic Positioning System Using a Novel Model Reference Control Scheme
,”
ASME J. Dyn. Syst., Meas., Control
,
111
, pp.
294
295
.
2.
Lee
,
S. R.
, and
Srinivasan
,
K.
,
1990
, “
Self-Tuning Control Application to Closed-Loop Servohydraulic Material Testing
,”
ASME J. Dyn. Syst., Meas., Control
,
112
, pp.
682
683
.
3.
Thayer, W. J., 1958, “Transfer Functions for Moog Servovalves,” Moog Technical Bulletin 103, East Aurora, Moog Inc., Controls Division, New York.
4.
Akers
,
A.
, and
Lin
,
S. J.
,
1988
, “
Optimal Control Theory Applied to a Pump with Single-Stage Electrohydraulic Servovalve
,”
ASME J. Dyn. Syst., Meas., Control
,
110
, p.
121
121
.
5.
Shichang
,
Z.
,
Xingmin
,
C.
, and
Yuwan
,
C.
,
1991
, “
Optimal Control of Speed Conversion of a Valve Controlled Cylinder System
,”
ASME J. Dyn. Syst., Meas., Control
,
113
, p.
693
693
.
6.
Merritt, H. E., 1967, Hydraulic Control Systems, Wiley, New York, pp. 147–150 and 312–318.
7.
Watton, J., 1989, Fluid Power Systems: Modeling, Simulation, Analog and Microcomputer Control, Prentice Hall, New York, pp. 43–60 and 100–110.
8.
Lin
,
S. J.
, and
Akers
,
A.
,
1989
, “
A Dynamic Model of the Flapper-Nozzle Component of an Electrohydraulic Servovalve
,”
ASME J. Dyn. Syst., Meas., Control
,
111
, pp.
105
109
.
9.
Kim, D. H., and Tsao, Tsu-Chin, 1997, “An Improved Linearized Model for Electrohydraulic Servovalves and its Usage for Robust Performance Control System Design,” Proceedings of the American Control Conference, pp. 3807–3808.
10.
Tsao, T.-C., Hanson, R. D., Sun, Z., and Babinski, A., 1998, “Motion Control of Non-Circular Turning Process for Camshaft Machining,” Proceedings of the Japan-U.S.A. Symposium on Flexible Automation, Otsu, Japan, pp. 485–489.
11.
Zames
,
G.
, and
Francis
,
B. A.
,
1984
, “
On H∞ Optimal Sensitivity Theory for SISO Feedback Systems
,”
IEEE Trans. Autom. Control.
,
AC-29
, No.
4
, pp.
11
13
.
12.
Francis, B. A., 1987, A Course in H∞ Control Theory, Springer-Verlag, Berlin, pp. 15–22 and 75–83.
13.
Glover
,
K.
, and
Doyle
,
J.
,
1988
, “
State-Space Formulae for All Stabilizing Controllers That Satisfy an H∞ Norm Bound and Relations to Risk Sensitivity
,”
Syst. Control Lett.
,
11
, pp.
167
172
.
14.
Doyle
,
J. C.
,
Glover
,
K.
,
Khargonekar
,
P. P.
, and
Francis
,
B. A.
,
1989
, “
State-Space Solutions to Standard H2 and H∞ Control Problems
,”
IEEE Trans. Autom. Control.
,
AC-34
, No.
8
, pp.
831
847
.
15.
Kwakernaak
,
H.
,
1985
, “
Minimax Frequency Domain Performance and Robustness Optimization of Linear Feedback Systems
,”
IEEE Trans. Autom. Control.
,
AC-30
, No.
10
, pp.
994
1004
.
16.
McCloy, D., and Martin, H. R., 1973, Control of Fluid Power, John Wiley and Sons, Inc., New York, pp. 120–125, 180–185.
17.
Smith, J. O., 1983, “Techniques for Digital Filter Design and System Identification with Application to the Violin,” Ph.D. dissertation, Electrical Engineering Dept., Stanford University, p. 50.
18.
Chen
,
M. J.
, and
Desoer
,
C. A.
,
1982
, “
Necessary and Sufficient Condition for Robust Stability of Linear Distributed Feedback Systems
,”
Int. J. Control
,
35
, pp.
255
267
.
19.
Doyle, J., Francis, B., and Tannenbaum, A., 1992, Feedback Control Theory, MacMillan Publishing Company, New York, pp. 88–91.
20.
Balas, G., Doyle, J. C., Glover, K., Packard, A., and Smith, R., 1991, μ-Analysis and Synthesis Toolbox, The MathWorks, Inc., Natick, MA.
21.
Kim, D. H., and Tsao, Tsu-Chin 1997, “Robust Performance Control of Electrohydraulic Actuators for Camshaft Machining,” ASME publication FPST-Vol. 4/DSC-Vol. 63, Fluid Power Systems and Technology: Collected Papers.
You do not currently have access to this content.