This paper presents a computer aided design for machining (DFMc) platform that enables designers to customize the design for the available machine tools and to estimate the effect of design decisions on the accuracy of the final machined products, particularly those containing sculptured surfaces. The platform contains two modules to model and simulate the actual machined surface and to evaluate the resulting minimum deviation zone compared to the desired geometry. In the first module, based on the configuration of the available machine tool and the limitations imposed by its inherent errors, the machined surface is simulated and presented as a nonuniform rational B-spline (NURBS) surface. In the second module, the minimum deviation zone between the actual and the nominal NURBS surfaces is evaluated when the developed method to do this task efficiently improves the convergence of the resulting optimization process. Utilizing this platform, two different applications are developed; design tolerance allocation based on the minimum deviation zone of the machined surface and adaptation of the nominal design to compensate for the effect of machining errors. Employing these applications during the design stage improves the acceptance rate of the produced parts and reduces the rate of scrap and rework. The DFMc platform and its presented applications can be implemented in any integrated computer aided design/computer aided manufacturing (CAD/CAM) system. The presented methods can be applied to any type of input geometries and are particularly efficient for design and manufacturing of precise components with complex surfaces. Products in this group, such as dies and tools, medical instruments, and biomedical implants, mostly have critical and important functionalities that demand very careful design and manufacturing decisions.

1.
Boothroyd
,
G.
, 1994, “
Product Design for Manufacture and Assembly
,”
Comput.-Aided Des.
0010-4485,
26
, pp.
505
515
.
2.
Gupta
,
S. K.
,
Regli
,
W. C.
,
Das
,
D.
, and
Nau
,
D. S.
, 1995, “
Automated Manufacturability Analysis: A Survey
,” Carnegie Mellon University, Report No. ISR-TR-95-14.
3.
Gupta
,
S. K.
,
Regli
,
W. C.
,
Das
,
D.
, and
Nau
,
D. S.
, 1995, NIST, Report No. IR 5713.
4.
Gadalla
,
M. A.
, and
ElMaraghy
,
W. H.
, 1997, “
Tolerancing of Free Form Surfaces
”,
Proceedings of the Fifth CIRP International Seminar on Computer Aided Tolerancin
g, Toronto, pp.
267
277
.
5.
Nassef
,
A. O.
, and
ElMaraghy
,
H. A.
, 1997, “
Allocation of Geometric Tolerances: New Criterion and Methodology
,”
CIRP Ann.
0007-8506,
46
(
1
), pp.
101
106
.
6.
Corney
,
J.
,
Hayes
,
C.
,
Sundararajan
,
V.
, and
Wright
,
P.
, 2005, “
The CAD/CAM Interface: A 25-Year Retrospective
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
5
, pp.
188
197
.
7.
Nassef
,
A. O.
, and
ElMaraghy
,
H. A.
, 1995, “
Statistical Analysis and Optimal Allocation of Geometric Tolerances
,”
Proceedings of the Computers in Engineering Conference and the Engineering Database Symposium
,
ASME
,
New York
, pp.
817
823
.
8.
Ji
,
S.
,
Li
,
X.
,
Cai
,
M.
, and
Cai
,
H.
, 2000, “
Optimal Tolerance Allocation Based on Fuzzy Comprehensive Evaluation and Genetic Algorithm
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
16
, pp.
461
468
.
9.
Hocken
,
R. J.
, 1980, “
Technology of Machine Tools: Machine Tool Accuracy
,” Lawrence Livermore Laboratory, University of California, Technical Report No. UCRL-52960-5.
10.
Suh
,
S. H.
,
Lee
,
E. S.
, and
Sohn
,
J. W.
, 1999, “
Enhancement of Geometric Accuracy Via an Intermediate Geometrical Feedback Scheme
,”
J. Manuf. Syst.
0278-6125,
18
, pp.
12
21
.
11.
Lo
,
C. C.
, and
Hsiao
,
C. Y.
, 1998, “
A Method of Tool Path Compensation for Repeated Machining Process
,”
Int. J. Mach. Tools Manuf.
0890-6955,
38
(
3
), pp.
205
213
.
12.
Barari
,
A.
,
ElMaraghy
,
H. A.
,
Knopf
,
G. K.
, and
Orban
,
P.
, 2004, “
Integrated Inspection and Machining Approach to Machining Error Compensation: Advantages and Limitations
,”
Proceedings of FAIM
, Toronto, Canada, pp.
563
572
.
13.
Barari
,
A.
, and
ElMaraghy
,
H. A.
, 2005, “
Manufacturing Driven Design of Sculptured Surfaces
,”
Advances in Design
,
Springer-Verlag
,
Berlin
, pp.
523
534
.
14.
Lin
,
Y.
, and
Shen
,
Y.
, 2003, “
Modeling of Five-Axis Machine Tool Metrology Models Using the Matrix Summation Approach
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
21
, pp.
243
248
.
15.
ElMaraghy
,
H. A.
,
Barari
,
A.
, and
Knopf
,
G. K.
, 2004, “
Integrated Inspection and Machining for Maximum Conformance to Design Tolerances
,”
CIRP Ann.
0007-8506,
53
(
1
), pp.
411
416
.
16.
Piegl
,
L.
, and
Tiller
,
W.
, 1995,
The NURBS Book
,
Springer-Verlag
,
Berlin
.
17.
Yau
,
H. T.
, and
Menq
,
C. H.
, 1996, “
Unified Least-Square Approach to the Evaluation of Geometric Errors Using Discrete Measurement Data
,”
Int. J. Mach. Tools Manuf.
0890-6955,
36
(
11
), pp.
1269
1290
.
18.
Barari
,
A.
,
ElMaraghy
,
H. A.
, and
Knopf
,
G. K.
, 2005, “
Evaluation of Geometric Deviations in Sculptured Surfaces Using Probability Density Estimation
,”
Proceedings of the Ninth CIRP International Seminar on Computer Aided Tolerancing
, Tempe, AZ.
19.
Barari
,
A.
,
ElMaraghy
,
H. A.
, and
Knopf
,
G. K.
, 2007, “
Search—Guided Sampling to Reduce Uncertainty of Minimum Zone Estimation
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
7
(
4
), pp.
360
371
.
20.
Lin
,
S. S.
,
Varghese
,
P.
,
Zhang
,
C.
, and
Wang
,
H. B.
, 1995, “
A Comparative Analysis of CMM From-Fitting Algorithms
,”
Manuf. Rev.
0896-1611,
8
(
1
), pp.
47
58
.
21.
Choi
,
W.
, and
Kurfess
,
T. R.
, 1999, “
Dimensional Measurement Data Analysis, Part 1: A Zone Fitting Algorithm
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
121
, pp.
238
245
.
22.
Wang
,
Y.
, 1992, “
Minimum Zone Evaluation of Form Tolerances
,”
Flexible Automation
,
199
, pp.
1035
1039
.
23.
Lagarias
,
J. C.
,
Reeds
,
J. A.
,
Wright
,
M. H.
, and
Wright
,
P. E.
, 1998, “
Convergence Properties of the Nelder–Mead Simplex Method in Low Dimensions
,”
SIAM J. Optim.
1052-6234,
9
(
1
), pp.
112
147
.
You do not currently have access to this content.