Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In the contemporary era of engineering education, the integration of large language models, offers a novel perspective on enhancing the design process. This study investigates the impact of ChatGPT-3.5 on mechanical engineering design education, focusing on concept generation and detailed modeling. By comparing outcomes from artificial intelligence (AI)-assisted groups to those without AI assistance, our research reveals that AI significantly broadens concept generation diversity but also introduces bias for existing popular designs. Additionally, while AI aids in suggesting functions for computer-aided design (CAD) modeling, its textual nature and the occurrence of unreliable responses limit its usefulness in detailed CAD modeling tasks, highlighting the irreplaceable value of traditional learning materials and hands-on practice. The study concludes that AI should serve as a complement to, rather than a replacement for, traditional design education. Additionally, it highlights the necessity for further specialization within AI to enhance its effectiveness.

References

1.
Viswanathan
,
V.
,
Tomko
,
M.
, and
Linsey
,
J.
,
2016
, “
A Study on the Effects of Example Familiarity and Modality on Design Fixation
,”
AI EDAM
,
30
(
2
), pp.
171
184
.
2.
Nishimoto
,
K.
,
Sumi
,
Y.
, and
Mase
,
K.
,
1996
, “
Toward an Outsider Agent for Supporting a Brainstorming Session–An Information Retrieval Method From a Different Viewpoint
,”
Knowl.-Based Syst.
,
9
(
6
), pp.
377
384
.
3.
Buzan
,
T.
, and
Buzan
,
B.
,
1996
,
How to Use Radiant Thinking to Maximize Your Brain’s Untapped Potential
,
Dutton
,
New York, NY
.
4.
Altshuller
,
G.
,
Shulyak
,
L.
,
Rodman
,
S.
, and
Fedoseev
,
U.
,
2002
, “40 Principles: Triz Keys to Innovation,” Technical Innovation Center.
5.
Jin
,
X.
, and
Dong
,
H.
,
2020
, “
New Design Heuristics in the Digital Era
,”
Proceedings of the Design Society: DESIGN Conference
,
Cavtat, Croatia
,
Oct. 26–29
, Cambridge University Press, pp.
607
616
.
6.
Sarica
,
S.
,
Luo
,
J.
, and
Wood
,
K. L.
,
2020
, “
Technet: Technology Semantic Network Based on Patent Data
,”
Exp. Syst. Appl.
,
142
(
1
), p.
112995
.
7.
Sarica
,
S.
,
Song
,
B.
,
Luo
,
J.
, and
Wood
,
K. L.
,
2021
, “
Idea Generation With Technology Semantic Network
,”
AI EDAM
,
35
(
3
), pp.
265
283
.
8.
Sangelkar
,
S.
, and
McAdams
,
D. A.
,
2017
, “
Automated Graph Grammar Generation for Engineering Design With Frequent Pattern Mining
,” In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol.
58127
,
American Society of Mechanical Engineers
, p.
V02AT03A006
.
9.
Arslan
,
Y.
,
Allix
,
K.
,
Veiber
,
L.
,
Lothritz
,
C.
,
Bissyandé
,
T. F.
,
Klein
,
J.
, and
Goujon
,
A.
,
2021
, “
A Comparison of Pre-Trained Language Models for Multi-Class Text Classification in the Financial Domain
,”
The Web Conference 2021
,
Ljubljana, Slovenia
,
Apr. 19–23
.
10.
Kublik
,
S.
, and
Saboo
,
S.
,
2022
,
GPT-3
,
O’Reilly Media, Inc
,
Sebastopol, CA
.
11.
Ali
,
S. R.
,
Dobbs
,
T. D.
,
Hutchings
,
H. A.
, and
Whitaker
,
I. S.
,
2023
, “
Using ChatGPT to Write Patient Clinic Letters
,”
Lancet Digit. Health
,
5
(
4
), pp.
e179
e181
.
12.
Wong
,
I. A.
,
Lian
,
Q. L.
, and
Sun
,
D.
,
2023
, “
Autonomous Travel Decision-Making: An Early Glimpse Into ChatGPT and Generative AI
,”
J. Hospit. Tourism Manage.
,
56
(
1
), pp.
253
263
.
13.
Dai
,
Y.
,
Liu
,
A.
, and
Lim
,
C. P.
,
2023
, “
Reconceptualizing ChatGPT and Generative AI as a Student-Driven Innovation in Higher Education
,”
Proc. CIRP
,
119
(
1
), pp.
84
90
.
14.
Amaro
,
I.
,
Della Greca
,
A.
,
Francese
,
R.
,
Tortora
,
G.
, and
Tucci
,
C.
,
2023
, “
AI Unreliable Answers: A Case Study on ChatGPT
,”
Artificial Intelligence in HCI
,
Copenhagen, Denmark
, Springer, pp.
23
40
.
15.
Pavlik
,
J. V.
,
2023
, “
Collaborating With ChatGPT: Considering the Implications of Generative Artificial Intelligence for Journalism and Media Education
,”
J. Mass Commun. Educ.
,
78
(
1
), pp.
84
93
.
16.
Kung
,
T. H.
,
Cheatham
,
M.
,
Medenilla
,
A.
,
Sillos
,
C.
,
De Leon
,
L.
,
Elepaño
,
C.
,
Madriaga
,
M.
, et al.,
2023
, “
Performance of ChatGPT on USMLE: Potential for AI-Assisted Medical Education Using Large Language Models
,”
PLoS Digit. Health
,
2
(
2
), p.
e0000198
.
17.
Baidoo-Anu
,
D.
, and
Ansah
,
L. O.
,
2023
, “
Education in the Era of Generative Artificial Intelligence (AI): Understanding the Potential Benefits of ChatGPT in Promoting Teaching and Learning
,”
J. AI
,
7
(
1
), pp.
52
62
.
18.
Bernabei
,
M.
,
Colabianchi
,
S.
,
Falegnami
,
A.
, and
Costantino
,
F.
,
2023
, “
Students’ Use of Large Language Models in Engineering Education: A Case Study on Technology Acceptance, Perceptions, Efficacy, and Detection Chances
,”
Comput. Edu.: Artif. Intell.
,
5
(
1
), p.
100172
.
19.
Tsai
,
M.-L.
,
Ong
,
C. W.
, and
Chen
,
C.-L.
,
2023
, “
Exploring the Use of Large Language Models (LLMs) in Chemical Engineering Education: Building Core Course Problem Models With Chat-GPT
,”
Edu. Chem. Eng.
,
44
(
1
), pp.
71
95
.
20.
Liu
,
R.
,
Zenke
,
C.
,
Liu
,
C.
,
Holmes
,
A.
,
Thornton
,
P.
, and
Malan
,
D. J.
,
2024
, “
Teaching CS50 With AI: Leveraging Generative Artificial Intelligence in Computer Science Education
,”
SIGCSE 2024: The 55th ACM Technical Symposium on Computer Science Education
,
Portland, OR
, Vol. 1, pp.
750
756
.
21.
Cotton
,
D. R.
,
Cotton
,
P. A.
, and
Shipway
,
J. R.
,
2024
, “
Chatting and Cheating: Ensuring Academic Integrity in the Era of Chat-GPT
,”
Innovat. Edu. Teach. Int.
,
61
(
2
), pp.
228
239
.
22.
Kim
,
D.
,
Kim
,
T.
,
Kim
,
Y.
,
Byun
,
Y.-H.
, and
Yun
,
T. S.
,
2024
, “
A ChatGPT-MATLAB Framework for Numerical Modeling in Geotechnical Engineering Applications
,”
Comput. Geotechn.
,
169
(
1
), p.
106237
.
23.
Tian
,
J.
,
Hou
,
J.
,
Wu
,
Z.
,
Shu
,
P.
,
Liu
,
Z.
,
Xiang
,
Y.
,
Gu
,
B.
,
Filla
,
N.
,
Li
,
Y.
,
Liu
,
N.
, and
Chen
,
X.
,
2024
, “Assessing Large Language Models in Mechanical Engineering Education: A Study on Mechanics-Focused Conceptual Understanding,”
arXiv preprint
. https://arxiv.org/abs/2401.12983
24.
Zheng
,
C.
,
Liu
,
Z.
,
Xie
,
E.
,
Li
,
Z.
, and
Li
,
Y.
,
2023
, “Progressive-Hint Prompting Improves Reasoning in Large Language Models,”
arXiv preprint
. https://arxiv.org/abs/2304.09797
25.
Wei
,
J.
,
Wang
,
X.
,
Schuurmans
,
D.
,
Bosma
,
M.
,
Xia
,
F.
,
Chi
,
E.
,
Le
,
Q. V.
, and
Zhou
,
D.
,
2022
, “
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
,”
Adv. Neur. Inf. Process. Syst.
,
35
(
1
), pp.
24824
24837
.
26.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
, and
Grote
,
K.-H.
,
1996
,
Engineering Design: A Systematic Approach
, Vol.
3
,
Springer
,
London UK
.
27.
ElMaraghy
,
W.
,
ElMaraghy
,
H.
,
Tomiyama
,
T.
, and
Monostori
,
L.
,
2012
, “
Complexity in Engineering Design and Manufacturing
,”
CIRP Ann.
,
61
(
2
), pp.
793
814
.
28.
Rattray
,
J.
, and
Jones
,
M. C.
,
2007
, “
Essential Elements of Questionnaire Design and Development
,”
J. Clin. Nurs.
,
16
(
2
), pp.
234
243
.
29.
Toh
,
C. A.
, and
Miller
,
S. R.
,
2016
, “
The Preferences for Creativity Scale (PCS): Identifying the Underlying Constructs of Creative Concept Selection
,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol.
50190
,
American Society of Mechanical Engineers
, p.
V007T06A013
.
30.
Pham-Gia
,
T.
, and
Hung
,
T. L.
,
2001
, “
The Mean and Median Absolute Deviations
,”
Math. Comput. Modell.
,
34
(
7–8
), pp.
921
936
.
31.
Arkes
,
H. R.
, and
Blumer
,
C.
,
1985
, “
The Psychology of Sunk Cost
,”
Organ. Behav. Human Decis. Process.
,
35
(
1
), pp.
124
140
.
32.
Makatura
,
L.
,
Foshey
,
M.
,
Wang
,
B.
,
HähnLein
,
F.
,
Ma
,
P.
,
Deng
,
B.
,
Tjandrasuwita
,
M.
,
Spielberg
,
A.
,
Owens
,
C. E.
,
Chen
,
P. Y.
, and
Zhao
,
A
,
2023
, “
How Can Large Language Models Help Humans in Design and Manufacturing?
,”
arXiv preprint arXiv:2307.14377
. https://arxiv.org/abs/2307.14377
You do not currently have access to this content.