Abstract
The precision in forming complex double-walled hollow turbine blades significantly influences their cooling efficiency, making the selection of appropriate casting process parameters critical for achieving fine-casting blade formation. However, the high cost associated with real blade casting necessitates strategies to enhance product formation rates and mitigate cost losses stemming from the overshoot phenomenon. We propose a machine learning (ML) data-driven framework leveraging an enhanced whale optimization algorithm (WOA) to estimate product formation under diverse process conditions to address this challenge. Complex double-walled hollow turbine blades serve as a representative case within our proposed framework. We constructed a database using simulation data, employed feature engineering to identify crucial features and streamline inputs, and utilized a whale optimization algorithm-back-propagation neural network (WOA-BP) as the foundational ML model. To enhance WOA-BP’s performance, we introduce an optimization algorithm, the improved chaos whale optimization-back-propagation (ICWOA-BP), incorporating cubic chaotic mapping adaptation. Experimental evaluation of ICWOA-BP demonstrated an average mean absolute error of 0.001995 mm, reflecting a 36.21% reduction in prediction error compared to conventional models, as well as two well-known optimization algorithms (particle swarm optimization (PSO), quantum-based avian navigation optimizer algorithm (QANA)). Consequently, ICWOA-BP emerges as an effective tool for early prediction of dimensional quality in complex double-walled hollow turbine blades.