Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Data-driven constitutive modeling frameworks based on neural networks and classical representation theorems have recently gained considerable attention due to their ability to easily incorporate constitutive constraints and their excellent generalization performance. In these models, the stress prediction follows from a linear combination of invariant-dependent coefficient functions and known tensor basis generators. However, thus far the formulations have been limited to stress representations based on the classical Finger–Rivlin–Ericksen form, while the performance of alternative representations has yet to be investigated. In this work, we survey a variety of tensor basis neural network models for modeling hyperelastic materials in a finite deformation context, including a number of so far unexplored formulations which use theoretically equivalent invariants and generators to Finger–Rivlin–Ericksen. Furthermore, we compare potential-based and coefficient-based approaches, as well as different calibration techniques. Nine variants are tested against both noisy and noiseless datasets for three different materials. Theoretical and practical insights into the performance of each formulation are given.

References

1.
Ling
,
J.
,
Jones
,
R.
, and
Templeton
,
J.
,
2016
, “
Machine Learning Strategies for Systems With Invariance Properties
,”
J. Comput. Phys.
,
318
, pp.
22
35
.
2.
Fang
,
R.
,
Sondak
,
D.
,
Protopapas
,
P.
, and
Succi
,
S.
,
2020
, “
Neural Network Models for the Anisotropic Reynolds Stress Tensor in Turbulent Channel Flow
,”
J. Turbul.
,
21
(
9–10
), pp.
525
543
.
3.
Kaandorp
,
M. L.
, and
Dwight
,
R. P.
,
2020
, “
Data-Driven Modelling of the Reynolds Stress Tensor Using Random Forests With Invariance
,”
Comput. Fluids
,
202
, p.
104497
.
4.
Wang
,
J.
,
Li
,
T.
,
Cui
,
F.
,
Hui
,
C.-Y.
,
Yeo
,
J.
, and
Zehnder
,
A. T.
,
2021
, “
Metamodeling of Constitutive Model Using Gaussian Process Machine Learning
,”
J. Mech. Phys. Solids
,
154
, p.
104532
.
5.
Sun
,
S.
,
Ouyang
,
R.
,
Zhang
,
B.
, and
Zhang
,
T.-Y.
,
2019
, “
Data-Driven Discovery of Formulas by Symbolic Regression
,”
MRS Bull.
,
44
(
7
), pp.
559
564
.
6.
Kabliman
,
E.
,
Kolody
,
A. H.
,
Kronsteiner
,
J.
,
Kommenda
,
M.
, and
Kronberger
,
G.
,
2021
, “
Application of Symbolic Regression for Constitutive Modeling of Plastic Deformation
,”
Appl. Eng. Sci.
,
6
, p.
100052
.
7.
Bomarito
,
G.
,
Townsend
,
T.
,
Stewart
,
K.
,
Esham
,
K.
,
Emery
,
J.
, and
Hochhalter
,
J.
,
2021
, “
Development of Interpretable, Data-Driven Plasticity Models With Symbolic Regression
,”
Comput. Struct.
,
252
, p.
106557
.
8.
Wang
,
M.
,
Chen
,
C.
, and
Liu
,
W.
,
2022
, “
Establish Algebraic Data-Driven Constitutive Models for Elastic Solids With a Tensorial Sparse Symbolic Regression Method and a Hybrid Feature Selection Technique
,”
J. Mech. Phys. Solids
,
159
, p.
104742
.
9.
de Oca Zapiain
,
D. M.
,
Lane
,
J. M. D.
,
Carroll
,
J. D.
,
Casias
,
Z.
,
Battaile
,
C. C.
,
Fensin
,
S.
, and
Lim
,
H.
,
2023
, “
Establishing a Data-Driven Strength Model for β-Tin by Performing Symbolic Regression Using Genetic Programming
,”
Comput. Mater. Sci.
,
218
, p.
111967
.
10.
Abdusalamov
,
R.
,
Hillgärtner
,
M.
, and
Itskov
,
M.
,
2023
, “
Automatic Generation of Interpretable Hyperelastic Material Models by Symbolic Regression
,”
Int. J. Numer. Methods Eng.
,
124
(
9
), pp.
2093
2104
.
11.
Wang
,
K.
,
Sun
,
W.
, and
Du
,
Q.
,
2019
, “
A Cooperative Game for Automated Learning of Elasto-plasticity Knowledge Graphs and Models With AI-Guided Experimentation
,”
Comput. Mech.
,
64
, pp.
467
499
.
12.
Schmidt
,
M.
, and
Lipson
,
H.
,
2009
, “
Distilling Free-Form Natural Laws From Experimental Data
,”
Science
,
324
(
5923
), pp.
81
85
.
13.
Thakolkaran
,
P.
,
Joshi
,
A.
,
Zheng
,
Y.
,
Flaschel
,
M.
,
De Lorenzis
,
L.
,
Kumar
,
S.
,
2022
, “
NN-EUCLID Deep-Learning Hyperelasticity Without Stress Data
,”
J. Mech. Phys. Solids
,
169
, p.
105076
.
14.
Flaschel
,
M.
,
Kumar
,
S.
, and
De Lorenzis
,
L.
,
2022
, “
Discovering Plasticity Models Without Stress Data
,”
npj Comput. Mater.
,
8
(
1
), pp.
1
10
.
15.
Joshi
,
A.
,
Thakolkaran
,
P.
,
Zheng
,
Y.
,
Escande
,
M.
,
Flaschel
,
M.
,
De Lorenzis
,
L.
, and
Kumar
,
S.
,
2022
, “
Bayesian-EUCLID, Discovering Hyperelastic Material Laws With Uncertainties
,”
Comput. Methods Appl. Mech. Eng.
,
398
, p.
115225
.
16.
Wu
,
X.
, and
Ghaboussi
,
J.
,
1990
, “
Representation of Material Behavior: Neural Network-Based Models
,”
1990 IJCNN International Joint Conference on Neural Networks
,
San Diego, CA
,
June 17–21
,
IEEE
, pp.
229
234
.
17.
Ghaboussi
,
J.
,
Garrett
,
J. H.
, and
Wu
,
X.
,
1990
, “
Material Modeling With Neural Networks
,”
Proceedings of the International Conference on Numerical Methods in Engineering: Theory and Applications
,
Wales, UK
, pp.
701
717
.
18.
Ghaboussi
,
J.
,
Garrett Jr
,
J.
, and
Wu
,
X.
,
1991
, “
Knowledge-Based Modeling of Material Behavior With Neural Networks
,”
J. Eng. Mech.
,
117
(
1
), pp.
132
153
.
19.
Lefik
,
M.
, and
Schrefler
,
B. A.
,
2003
, “
Artificial Neural Network as an Incremental Non-linear Constitutive Model for a Finite Element Code
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
28–30
), pp.
3265
3283
.
20.
Jung
,
S.
, and
Ghaboussi
,
J.
,
2006
, “
Characterizing Rate-Dependent Material Behaviors in Self-learning Simulation
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
1–3
), pp.
608
619
.
21.
Huang
,
D.
,
Fuhg
,
J. N.
,
Weissenfels
,
C.
, and
Wriggers
,
P.
,
2020
, “
A Machine Learning Based Plasticity Model Using Proper Orthogonal Decomposition
,”
Comput. Methods Appl. Mech. Eng.
,
365
, p.
113008
.
22.
Fuhg
,
J. N.
,
Marino
,
M.
, and
Bouklas
,
N.
,
2022
, “
Local Approximate Gaussian Process Regression for Data-Driven Constitutive Models: Development and Comparison With Neural Networks
,”
Comput. Methods Appl. Mech. Eng.
,
388
, p.
114217
.
23.
Liu
,
Z.
, and
Wu
,
C.
,
2019
, “
Exploring the 3D Architectures of Deep Material Network in Data-Driven Multiscale Mechanics
,”
J. Mech. Phys. Solids
,
127
, pp.
20
46
.
24.
Heider
,
Y.
,
Wang
,
K.
, and
Sun
,
W.
,
2020
, “
SO (3)-Invariance of Informed-Graph-Based Deep Neural Network for Anisotropic Elastoplastic Materials
,”
Comput. Methods Appl. Mech. Eng.
,
363
, p.
112875
.
25.
Xu
,
K.
,
Huang
,
D. Z.
, and
Darve
,
E.
,
2021
, “
Learning Constitutive Relations Using Symmetric Positive Definite Neural Networks
,”
J. Comput. Phys.
,
428
, p.
110072
.
26.
Xu
,
K.
,
Tartakovsky
,
A. M.
,
Burghardt
,
J.
, and
Darve
,
E.
,
2021
, “
Learning Viscoelasticity Models From Indirect Data Using Deep Neural Networks
,”
Comput. Methods Appl. Mech. Eng.
,
387
, p.
114124
.
27.
Fuhg
,
J. N.
,
Hamel
,
C. M.
,
Johnson
,
K.
,
Jones
,
R.
, and
Bouklas
,
N.
,
2023
, “
Modular Machine Learning-Based Elastoplasticity: Generalization in the Context of Limited Data
,”
Comput. Methods Appl. Mech. Eng.
,
407
, pp.
115930
.
28.
Fuhg
,
J. N.
,
Fau
,
A.
,
Bouklas
,
N.
, and
Marino
,
M.
,
2023
, “
Enhancing Phenomenological Yield Functions With Data: Challenges and Opportunities
,”
Euro. J. Mech.-A/Solids
, p.
104925
.
29.
Jones
,
R.
,
Templeton
,
J.
,
Sanders
,
C.
, and
Ostien
,
J.
,
2018
, “
Machine Learning Models of Plastic Flow Based on Representation Theory
,”
CMES-Comput. Model. Eng. Sci.
,
117
(
3
), pp. 309–-342.
30.
Jones
,
R. E.
,
Frankel
,
A. L.
, and
Johnson
,
K.
,
2022
, “
A Neural Ordinary Differential Equation Framework for Modeling Inelastic Stress Response Via Internal State Variables
,”
J. Mach. Learn. Model. Comput.
,
3
(
3
), pp.
1
35
.
31.
Klein
,
D. K.
,
Fernández
,
M.
,
Martin
,
R. J.
,
Neff
,
P.
, and
Weeger
,
O.
,
2022
, “
Polyconvex Anisotropic Hyperelasticity With Neural Networks
,”
J. Mech. Phys. Solids
,
159
, p.
104703
.
32.
Fuhg
,
J. N.
,
Bouklas
,
N.
, and
Jones
,
R. E.
,
2022
, “
Learning Hyperelastic Anisotropy From Data Via a Tensor Basis Neural Network
,”
J. Mech. Phys. Solids
,
168
, p.
105022
.
33.
Masi
,
F.
,
Stefanou
,
I.
,
Vannucci
,
P.
, and
Maffi-Berthier
,
V.
,
2021
, “
Thermodynamics-Based Artificial Neural Networks for Constitutive Modeling
,”
J. Mech. Phys. Solids
,
147
, p.
104277
.
34.
Linka
,
K.
,
Hillgärtner
,
M.
,
Abdolazizi
,
K. P.
,
Aydin
,
R. C.
,
Itskov
,
M.
, and
Cyron
,
C. J.
,
2021
, “
Constitutive Artificial Neural Networks: A Fast and General Approach to Predictive Data-Driven Constitutive Modeling by Deep Learning
,”
J. Comput. Phys.
,
429
, p.
110010
.
35.
Vlassis
,
N. N.
,
Ma
,
R.
, and
Sun
,
W.
,
2020
, “
Geometric Deep Learning for Computational Mechanics Part I: Anisotropic Hyperelasticity
,”
Comput. Methods Appl. Mech. Eng.
,
371
, p.
113299
.
36.
Frankel
,
A.
,
Tachida
,
K.
, and
Jones
,
R.
,
2020
, “
Prediction of the Evolution of the Stress Field of Polycrystals Undergoing Elastic-Plastic Deformation With a Hybrid Neural Network Model
,”
Mach. Learn.: Sci. Technol.
,
1
(
3
), p.
035005
.
37.
Fuhg
,
J. N.
, and
Bouklas
,
N.
,
2022
, “
On Physics-Informed Data-Driven Isotropic and Anisotropic Constitutive Models Through Probabilistic Machine Learning and Space-filling Sampling
,”
Comput. Methods Appl. Mech. Eng.
,
394
, p.
114915
.
38.
Linden
,
L.
,
Klein
,
D. K.
,
Kalina
,
K. A.
,
Brummund
,
J.
,
Weeger
,
O.
, and
Kästner
,
M.
,
2023
, “
Neural Networks Meet Hyperelasticity: A Guide to Enforcing Physics
,”
J. Mech. Phys. Solids
, p.
105363
.
39.
Frankel
,
A. L.
,
Jones
,
R. E.
,
Alleman
,
C.
, and
Templeton
,
J. A.
,
2019
, “
Predicting the Mechanical Response of Oligocrystals With Deep Learning
,”
Comput. Mater. Sci.
,
169
, p.
109099
.
40.
Truesdell
,
C.
, and
Noll
,
W.
,
1965
, “
The Non-linear Field Theories of Mechanics
,”
The Non-linear Field Theories of Mechanics
,
Springer-Verlag
,
Berlin
, pp.
1
579
.
41.
Kalina
,
K. A.
,
Linden
,
L.
,
Brummund
,
J.
, and
Kästner
,
M.
,
2023
, “
FE ANN: An Efficient Data-Driven Multiscale Approach Based on Physics-Constrained Neural Networks and Automated Data Mining
,”
Comput. Mech.
,
71
(
5
), pp.
827
851
.
42.
Ball
,
J. M.
,
1976
, “
Convexity Conditions and Existence Theorems in Nonlinear Elasticity
,”
Archive Rat. Mech. Anal.
,
63
, pp.
337
403
.
43.
Linka
,
K.
, and
Kuhl
,
E.
,
2023
, “
A New Family of Constitutive Artificial Neural Networks Towards Automated Model Discovery
,”
Comput. Methods Appl. Mech. Eng.
,
403
, p.
115731
.
44.
Tac
,
V.
,
Costabal
,
F. S.
, and
Tepole
,
A. B.
,
2022
, “
Data-Driven Tissue Mechanics With Polyconvex Neural Ordinary Differential Equations
,”
Comput. Methods Appl. Mech. Eng.
,
398
, p.
115248
.
45.
Stainier
,
L.
,
Leygue
,
A.
, and
Ortiz
,
M.
,
2019
, “
Model-Free Data-Driven Methods in Mechanics: Material Data Identification and Solvers
,”
Comput. Mech.
,
64
(
2
), pp.
381
393
.
46.
Mota
,
A.
,
Sun
,
W.
,
Ostien
,
J. T.
,
Foulk
,
J. W.
, and
Long
,
K. N.
,
2013
, “
Lie-Group Interpolation and Variational Recovery for Internal Variables
,”
Comput. Mech.
,
52
, pp.
1281
1299
.
47.
Finger
,
J.
,
1894
, Das Potential der inneren Kräfte und die Beziehungen zwischen den Deformationen und den Spannungen in elastisch isotropen Körpern bei Berücksichtigung von Gliedern, die bezüglich der Deformationselemente von dritter, beziehungsweise zweiter Ordnung sind, Vol. 44, Sitzungsberichte der Akademie der Wissenschaften, Wien.
48.
Rivlin
,
R. S.
, and
Ericksen
,
J. L.
,
1955
, “
Stress-Deformation Relations for Isotropic Materials
,”
J. Ration. Mech. Anal.
,
4
, pp.
323
425
.
49.
Gurtin
,
M. E.
,
1982
,
An Introduction to Continuum Mechanics
,
Academic Press
,
Cambridge, MA
.
50.
Frankel
,
A. L.
,
Jones
,
R. E.
, and
Swiler
,
L. P.
,
2020
, “
Tensor Basis Gaussian Process Models of Hyperelastic Materials
,”
J. Mach. Learn. Model. Comput.
,
1
(
1
), pp.
1
17
.
51.
Criscione
,
J. C.
,
Humphrey
,
J. D.
,
Douglas
,
A. S.
, and
Hunter
,
W. C.
,
2000
, “
An Invariant Basis for Natural Strain Which Yields Orthogonal Stress Response Terms in Isotropic Hyperelasticity
,”
J. Mech. Phys. Solids
,
48
(
12
), pp.
2445
2465
.
52.
Gurtin
,
M. E.
,
1981
,
Topics in Finite Elasticity
,
SIAM
,
Philadelphia, PA
.
53.
Steigmann
,
D. J.
,
2017
,
Finite Elasticity Theory
,
Oxford University Press
,
Oxford, UK
.
54.
Amos
,
B.
,
Xu
,
L.
, and
Kolter
,
J. Z.
,
2017
, “
Input Convex Neural Networks
,”
International Conference on Machine Learning
,
Sydney, Australia
,
Aug. 6–11
, PMLR, pp.
146
155
.
55.
Serrin
,
J.
,
1959
, “
The Derivation of Stress-Deformation Relations for a Stokesian Fluid
,”
J. Math. Mech.
, pp.
459
469
.
56.
Man
,
C.-S.
,
1995
, “
Smoothness of the Scalar Coefficients in the Representation
,”
J. Elasticity
,
40
, pp.
165
182
.
57.
Scheidler
,
M.
,
1996
, “
Smoothness of the Scalar Coefficients in Representations of Isotropic Tensor-Valued Functions
,”
Math. Mech. Solids
,
1
(
1
), pp.
73
93
.
58.
Xiao
,
H.
,
Bruhns
,
O. T.
, and
Meyers
,
A.
,
2002
, “
Basic Issues Concerning Finite Strain Measures and Isotropic Stress-Deformation Relations
,”
J. Elasticity Phys. Sci. Solids
,
67
, pp.
1
23
.
59.
Treloar
,
L. R.
,
1974
, “
The Mechanics of Rubber Elasticity
,”
J. Polym. Sci.: Polym. Sym.
,
48
(
1
), pp.
107
123
.
60.
Jones
,
D.
, and
Treloar
,
L.
,
1975
, “
The Properties of Rubber in Pure Homogeneous Strain
,”
J. Phys. D: Appl. Phys.
,
8
(
11
), p.
1285
.
61.
Ogden
,
R. W.
,
1986
, “
Recent Advances in the Phenomenological Theory of Rubber Elasticity
,”
Rubber Chem. Technol.
,
59
(
3
), pp.
361
383
.
62.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
(
9
), pp.
582
592
.
63.
Rivlin
,
R. S.
,
1948
, “
Large Elastic Deformations of Isotropic Materials IV. Further Developments of the General Theory
,”
Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci.
,
241
(
835
), pp.
379
397
.
64.
Carroll
,
M.
,
2011
, “
A Strain Energy Function for Vulcanized Rubbers
,”
J. Elast.
,
103
, pp.
173
187
.
65.
Melly
,
S. K.
,
Liu
,
L.
,
Liu
,
Y.
, and
Leng
,
J.
,
2021
, “
Improved Carroll’s Hyperelastic Model Considering Compressibility and Its Finite Element Implementation
,”
Acta Mech. Sin.
,
37
, pp.
785
796
.
66.
Gent
,
A. N.
,
1996
, “
A New Constitutive Relation for Rubber
,”
Rubber Chem. Technol.
,
69
(
1
), pp.
59
61
.
67.
Pucci
,
E.
, and
Saccomandi
,
G.
,
2002
, “
A Note on the Gent Model for Rubber-Like Materials
,”
Rubber Chem. Technol.
,
75
(
5
), pp.
839
852
.
68.
Peng
,
X.
,
Han
,
L.
, and
Li
,
L.
,
2021
, “
A Consistently Compressible Mooney–Rivlin Model for the Vulcanized Rubber Based on the Penn’s Experimental Data
,”
Polym. Eng. Sci.
,
61
(
9
), pp.
2287
2294
.
69.
Ogden
,
R. W.
,
Saccomandi
,
G.
, and
Sgura
,
I.
,
2004
, “
Fitting Hyperelastic Models to Experimental Data
,”
Comput. Mech.
,
34
, pp.
484
502
.
70.
Paszke
,
A.
,
Gross
,
S.
,
Massa
,
F.
,
Lerer
,
A.
,
Bradbury
,
J.
,
Chanan
,
G.
,
Killeen
,
T.
,
Lin
,
Z.
,
Gimelshein
,
N.
,
Antiga
,
L.
, et al.,
2019
, “
Pytorch: An Imperative Style, High-Performance Deep Learning Library
,”
Adv. Neural Inform. Process. Syst.
,
32
, pp.
8026
8037
.
71.
Glorot
,
X.
,
Bordes
,
A.
, and
Bengio
,
Y.
,
2011
, “
Deep Sparse Rectifier Neural Networks
,”
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings
,
Fort Lauderdale, FL
,
Apr. 11–13
, pp.
315
323
.
72.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “Adam: A Method for Stochastic Optimization,” preprint arXiv:1412.6980.
73.
Currie
,
P.
,
2004
, “
The Attainable Region of Strain-Invariant Space for Elastic Materials
,”
Int. J. Non-Linear Mech.
,
39
(
5
), pp.
833
842
.
74.
Boehler
,
J.-P.
, and
Boehler
,
J.-P.
,
1987
,
Applications of Tensor Functions in Solid Mechanics
, Vol. 292,
Springer
.
75.
Simo
,
J. C.
, and
Hughes
,
T. J.
,
2006
,
Computational Inelasticity
, Vol. 7,
Springer Science & Business Media
,
Berlin, Germany
.
76.
Lubliner
,
J.
,
2008
,
Plasticity Theory
,
Courier Corporation
,
Lowell, MA
.
77.
Gurtin
,
M. E.
,
Fried
,
E.
, and
Anand
,
L.
,
2010
,
The Mechanics and Thermodynamics of Continua
,
Cambridge University Press
,
Cambridge, UK
.
78.
Lemaitre
,
J.
, and
Chaboche
,
J.-L.
,
1994
,
Mechanics of Solid Materials
,
Cambridge University Press
,
Cambridge, UK
.
79.
Lemaitre
,
J.
,
1985
, “
A Continuous Damage Mechanics Model for Ductile Fracture
,”
J. Eng. Mater. Technol.
,
107
(
1
), pp.
83
89
.
80.
Upadhyay
,
K.
,
Fuhg
,
J. N.
,
Bouklas
,
N.
, and
Ramesh
,
K.
,
2023
, “Physics-Informed Data-Driven Discovery of Constitutive Models With Application to Strain-Rate-Sensitive Soft Materials,” preprint arXiv:2304.13897.
81.
Reese
,
S.
, and
Govindjee
,
S.
,
1998
, “
A Theory of Finite Viscoelasticity and Numerical Aspects
,”
Int. J. Solids Struct.
,
35
(
26–27
), pp.
3455
3482
.
82.
De Pascalis
,
R.
,
Abrahams
,
I. D.
, and
Parnell
,
W. J.
,
2014
, “
On Nonlinear Viscoelastic Deformations: A Reappraisal of Fung’s Quasi-linear Viscoelastic Model
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
470
(
2166
), p.
20140058
.
83.
Flaschel
,
M.
,
Kumar
,
S.
, and
De Lorenzis
,
L.
,
2023
, “
Automated Discovery of Generalized Standard Material Models With EUCLID
,”
Comput. Methods Appl. Mech. Eng.
,
405
, p.
115867
.
84.
Pan
,
V. Y.
,
2016
, “
How Bad Are Vandermonde Matrices?
,”
SIAM J. Matrix Anal. Appl.
,
37
(
2
), pp.
676
694
.
You do not currently have access to this content.