Abstract

Despite their effectiveness in modeling complex phenomena, the adoption of machine learning (ML) methods in computational mechanics has been hindered by the lack of availability of training datasets, limitations on the accuracy of out-of-sample predictions, and computational cost. This work presents a physics-informed ML approach and network architecture that addresses these challenges in the context of modeling the behavior of materials with damage. The proposed methodology is a novel physics-informed general convolutional network (PIGCN) framework that features (1) the fusion of a dense edge network with a convolutional neural network (CNN) for specifying and enforcing boundary conditions and geometry information, (2) a data augmentation approach for learning more information from a static dataset that significantly reduces the necessary data for training, and (3) the use of a CNN for physics-informed ML applications, which is not as well explored as graph networks in the current literature. The PIGCN framework is demonstrated for a simple two-dimensional, rectangular plate with a hole or elliptical defect in a linear-elastic material, but the approach is extensible to three dimensions and more complex problems. The results presented in this article show that the PIGCN framework improves physics-based loss convergence and predictive capability compared to ML-only (physics-uninformed) architectures. A key outcome of this research is the significant reduction in training data requirements compared to ML-only models, which could reduce a considerable hurdle to using data-driven models in materials engineering where material experimental data are often limited.

References

1.
Adie
,
J.
,
Yang
,
J.
,
Zhang
,
M.
, and
See
,
S.
,
2018
, “
Deep Learning for Computational Science and Engineering
,”
GPU Technology Conference (No. S8242)
,
San Jose, CA
,
Apr. 4–7
.
2.
Fan
,
W.
, and
Qiao
,
P.
,
2011
, “
Vibration-Based Damage Identification Methods: A Review and Comparative Study
,”
Struct. Health. Monit.
,
10
(
1
), pp.
83
111
.
3.
Kubat
,
M.
, and
Kubat
,
J. A.
,
2017
,
An Introduction to Machine Learning
, Vol.
2
,
Springer International Publishing
,
Cham, Switzerland
, pp.
321
329
.
4.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
,
Cambridge, MA
.
5.
Avci
,
O.
,
Abdeljaber
,
O.
,
Kiranyaz
,
S.
,
Hussein
,
M.
,
Gabbouj
,
M.
, and
Inman
,
D. J.
,
2021
, “
A Review of Vibration-Based Damage Detection in Civil Structures: From Traditional Methods to Machine Learning and Deep Learning Applications
,”
Mech. Syst. Signal Process
,
147
(
2
), p.
107077
.
6.
Willard
,
J.
,
Jia
,
X.
,
Xu
,
S.
,
Steinbach
,
M.
, and
Kumar
,
V.
,
2022
, “
Integrating Scientific Knowledge With Machine Learning for Engineering and Environmental Systems
,”
ACM Comput. Surv.
,
55
(
4
), pp.
1
37
.
7.
Willcox
,
K. E.
,
Ghattas
,
O.
, and
Heimbach
,
P.
,
2021
, “
The Imperative of Physics-Based Modeling and Inverse Theory in Computational Science
,”
Nat. Comput. Sci.
,
1
(
3
), pp.
166
168
.
8.
Yang
,
Y.
, and
Perdikaris
,
P.
,
2018
, “
Physics-Informed Deep Generative Models
,”
Third Workshop on Bayesian Deep Learning (NeurIPS 2018)
,
Montréal, Canada
,
Dec. 7
.
9.
Raissi
,
M.
,
2018
, “
Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations
,”
J. Mach. Learn. Res.
,
19
(
1
), pp.
932
955
.
10.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2018
, “
Numerical Gaussian Processes for Time-Dependent and Nonlinear Partial Differential Equations
,”
SIAM J. Sci. Comput.
,
40
(
1
), pp.
A172
A198
.
11.
Karniadakis
,
G. E.
,
Kevrekidis
,
I. G.
,
Lu
,
L.
,
Perdikaris
,
P.
,
Wang
,
S.
, and
Yang
,
L.
,
2021
, “
Physics-Informed Machine Learning
,”
Nat. Rev. Phys.
,
3
(
6
), pp.
422
440
.
12.
Cuomo
,
S.
,
Di Cola
,
V. S.
,
Giampaolo
,
F.
,
Rozza
,
G.
,
Raissi
,
M.
, and
Piccialli
,
F.
,
2022
, “
Scientific Machine Learning Through Physics–Informed Neural Networks: Where We Are and What’s Next
,”
J. Sci. Comput.
,
92
(
3
), p.
88
.
13.
Lutter
,
M.
,
Ritter
,
C.
, and
Peters
,
J.
,
2019
, “
Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning
,”
International Conference on Learning Representations (ICLR)
,
New Orleans, LA
,
May 6–9
.
14.
Ledezma
,
F. D.
, and
Haddadin
,
S.
,
2017
, “
First-Order-Principles-Based Constructive Network Topologies: An Application to Robot Inverse Dynamics
,”
2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)
,
Birmingham, UK
,
Nov. 15–17
.
15.
Wang
,
J. X.
,
Wu
,
J. L.
, and
Xiao
,
H.
,
2017
, “
Physics-Informed Machine Learning Approach for Reconstructing Reynolds Stress Modeling Discrepancies Based on DNS Data
,”
Phys. Rev. Fluids
,
2
(
3
), p.
034603
.
16.
Sun
,
L.
,
Gao
,
H.
,
Pan
,
S.
, and
Wang
,
J. X.
,
2020
, “
Surrogate Modeling for Fluid Flows Based on Physics-Constrained Deep Learning Without Simulation Data
,”
Comput. Methods Appl. Mech. Eng.
,
361
(
4
), p.
112732
.
17.
Swischuk
,
R.
,
Mainini
,
L.
,
Peherstorfer
,
B.
, and
Willcox
,
K.
,
2019
, “
Projection-Based Model Reduction: Formulations for Physics-Based Machine Learning
,”
Comput. Fluids
,
179
(
2
), pp.
704
717
.
18.
Özbay
,
A. G.
,
Hamzehloo
,
A.
,
Laizet
,
S.
,
Tzirakis
,
P.
,
Rizos
,
G.
, and
Schuller
,
B.
,
2021
, “
Poisson CNN: Convolutional Neural Networks for the Solution of the Poisson Equation on a Cartesian Mesh
,”
Data-Centric Eng.
,
2
(
1
), p.
e6
.
19.
Xu
,
J.
,
Wei
,
H.
, and
Bao
,
H.
,
2023
, “
Physics-Informed Neural Networks for Studying Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transf.
,
217
(
18
), p.
124671
.
20.
Dwivedi
,
V.
, and
Srinivasan
,
B.
,
2022
, “
A Normal Equation-Based Extreme Learning Machine for Solving Linear Partial Differential Equations
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
1
), p.
014502
.
21.
Oommen
,
V.
, and
Srinivasan
,
B.
,
2022
, “
Solving Inverse Heat Transfer Problems Without Surrogate Models: A Fast, Data-Sparse, Physics Informed Neural Network Approach
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
4
), p.
041012
.
22.
Tartakovsky
,
A. M.
,
Marrero
,
C. O.
,
Perdikaris
,
P.
,
Tartakovsky
,
G. D.
, and
Barajas-Solano
,
D.
,
2020
, “
Physics-Informed Deep Neural Networks for Learning Parameters and Constitutive Relationships in Subsurface Flow Problems
,”
Water Resour. Res.
,
56
(
5
), p.
e2019WR026731
.
23.
Huang
,
D. Z.
,
Xu
,
K.
,
Farhat
,
C.
, and
Darve
,
E.
,
2020
, “
Learning Constitutive Relations From Indirect Observations Using Deep Neural Networks
,”
J. Comput. Phys.
,
416
(
17
), p.
109491
.
24.
Kamali
,
A.
,
Sarabian
,
M.
, and
Laksari
,
K.
,
2023
, “
Elasticity Imaging Using Physics-Informed Neural Networks: Spatial Discovery of Elastic Modulus and Poisson's Ratio
,”
Acta Biomater.
,
155
(
1
), pp.
400
409
.
25.
Haghighat
,
E.
,
Raissi
,
M.
,
Moure
,
A.
,
Gomez
,
H.
, and
Juanes
,
R.
,
2021
, “
A Physics-Informed Deep Learning Framework for Inversion and Surrogate Modeling in Solid Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
379
(
7
), p.
113741
.
26.
Haghighat
,
E.
, and
Juanes
,
R.
,
2021
, “
SciANN: A Keras/TensorFlow Wrapper for Scientific Computations and Physics-Informed Deep Learning Using Artificial Neural Networks
,”
Comput. Methods Appl. Mech. Eng.
,
373
(
1
), p.
113552
.
27.
Abueidda
,
D. W.
,
Koric
,
S.
,
Guleryuz
,
E.
, and
Sobh
,
N. A.
,
2023
, “
Enhanced Physics-Informed Neural Networks for Hyperelasticity
,”
Int. J. Numer. Methods Eng.
,
124
(
7
), pp.
1585
1601
.
28.
Niu
,
S.
,
Zhang
,
E.
,
Bazilevs
,
Y.
, and
Srivastava
,
V.
,
2023
, “
Modeling Finite-Strain Plasticity Using Physics-Informed Neural Network and Assessment of the Network Performance
,”
J. Mech. Phys. Solids
,
172
, p.
105177
.
29.
Diao
,
Y.
,
Yang
,
J.
,
Zhang
,
Y.
,
Zhang
,
D.
, and
Du
,
Y.
,
2023
, “
Solving Multi-material Problems in Solid Mechanics Using Physics-Informed Neural Networks Based on Domain Decomposition Technology
,”
Comput. Methods Appl. Mech. Eng.
,
413
, p.
116120
.
30.
Zhang
,
E.
,
Yin
,
M.
, and
Karniadakis
,
G. E.
,
2020
, “
Physics-Informed Neural Networks for Nonhomogeneous Material Identification in Elasticity Imaging
,”
AAAI Fall 2020 Symposium on Physics-Guided AI to Accelerate Scientific Discovery
,
Virtual
,
Nov. 13–14
.
31.
Rao
,
C.
,
Sun
,
H.
, and
Liu
,
Y.
,
2021
, “
Physics-Informed Deep Learning for Computational Elastodynamics Without Labeled Data
,”
J. Eng. Mech.
,
147
(
8
), p.
04021043
.
32.
Zheng
,
B.
,
Li
,
T.
,
Qi
,
H.
,
Gao
,
L.
,
Liu
,
X.
, and
Yuan
,
L.
,
2022
, “
Physics-Informed Machine Learning Model for Computational Fracture of Quasi-Brittle Materials Without Labelled Data
,”
Int. J. Mech. Sci.
,
223
(
11
), p.
107282
.
33.
Dwivedi
,
V.
, and
Srinivasan
,
B.
,
2020
, “
Solution of Biharmonic Equation in Complicated Geometries With Physics Informed Extreme Learning Machine
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
6
), p.
061004
.
34.
Bai
,
J.
,
Rabczuk
,
T.
,
Gupta
,
A.
,
Alzubaidi
,
L.
, and
Gu
,
Y.
,
2023
, “
A Physics-Informed Neural Network Technique Based on a Modified Loss Function for Computational 2D and 3D Solid Mechanics
,”
Comput. Mech.
,
71
(
3
), pp.
543
562
.
35.
Jeong
,
H.
,
Bai
,
J.
,
Batuwatta-Gamage
,
C. P.
,
Rathnayaka
,
C.
,
Zhou
,
Y.
, and
Gu
,
Y.
,
2023
, “
A Physics-Informed Neural Network-Based Topology Optimization (PINNTO) Framework for Structural Optimization
,”
Eng. Struct.
,
278
(
5
), p.
115484
.
36.
Liu
,
D.
,
Pusarla
,
P.
, and
Wang
,
Y.
,
2023
, “
Multifidelity Physics-Constrained Neural Networks With Minimax Architecture
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
3
), p.
031008
.
37.
Kim
,
B.
,
Azevedo
,
V. C.
,
Thuerey
,
N.
,
Kim
,
T.
,
Gross
,
M.
, and
Solenthaler
,
B.
,
2019
, “
Deep Fluids: A Generative Network for Parameterized Fluid Simulations
,”
Comput. Graphics Forum
,
38
(
2
), pp.
59
70
.
38.
Ranade
,
R.
,
Hill
,
C.
, and
Pathak
,
J.
,
2021
, “
DiscretizationNet: A Machine-Learning Based Solver for Navier–Stokes Equations Using Finite Volume Discretization
,”
Comput. Methods Appl. Mech. Eng.
,
378
(
6
), p.
113722
.
39.
Wu
,
J. L.
,
Kashinath
,
K.
,
Albert
,
A.
,
Chirila
,
D.
, and
Xiao
,
H.
,
2020
, “
Enforcing Statistical Constraints in Generative Adversarial Networks for Modeling Chaotic Dynamical Systems
,”
J. Comput. Phys.
,
406
(
7
), p.
109209
.
40.
Fukui
,
K. I.
,
Tanaka
,
J.
,
Tomita
,
T.
, and
Numao
,
M.
,
2019
, “
Physics-Guided Neural Network With Model Discrepancy Based on Upper Troposphere Wind Prediction
,”
2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA)
,
Boca Raton, FL
,
Dec. 16–19
, IEEE, pp.
414
419
.
41.
Kashinath
,
K.
,
Mustafa
,
M.
,
Albert
,
A.
,
Wu
,
J. L.
,
Jiang
,
C.
,
Esmaeilzadeh
,
S.
,
Azizzadenesheli
K.
, et al
,
2021
, “
Physics-Informed Machine Learning: Case Studies for Weather and Climate Modelling
,”
Philos. Trans. R. Soc., A
,
379
(
2194
), p.
20200093
.
42.
Wang
,
N.
,
Chang
,
H.
, and
Zhang
,
D.
,
2021
, “
Theory-Guided Auto-Encoder for Surrogate Construction and Inverse Modeling
,”
Comput. Methods Appl. Mech. Eng.
,
385
(
13
), p.
114037
.
43.
Zhu
,
Y.
,
Zabaras
,
N.
,
Koutsourelakis
,
P. S.
, and
Perdikaris
,
P.
,
2019
, “
Physics-Constrained Deep Learning for High-Dimensional Surrogate Modeling and Uncertainty Quantification Without Labeled Data
,”
J. Comput. Phys.
,
394
(
19
), pp.
56
81
.
44.
Gao
,
H.
,
Sun
,
L.
, and
Wang
,
J. X.
,
2021
, “
PhyGeoNet: Physics-Informed Geometry-Adaptive Convolutional Neural Networks for Solving Parameterized Steady-State PDEs on Irregular Domain
,”
J. Comput. Phys.
,
428
(
5
), p.
110079
.
45.
Mohan
,
A. T.
,
Lubbers
,
N.
,
Chertkov
,
M.
, and
Livescu
,
D.
,
2023
, “
Embedding Hard Physical Constraints in Neural Network Coarse-Graining of Three-Dimensional Turbulence
,”
Phys. Rev. Fluids
,
8
(
1
), p.
014604
.
46.
Zhang
,
P.
, and
Yin
,
Z. Y.
,
2021
, “
A Novel Deep Learning-Based Modelling Strategy From Image of Particles to Mechanical Properties for Granular Materials With CNN and BiLSTM
,”
Comput. Methods Appl. Mech. Eng.
,
382
(
10
), p.
113858
.
47.
Rao
,
C.
, and
Liu
,
Y.
,
2020
, “
Three-Dimensional Convolutional Neural Network (3D-CNN) for Heterogeneous Material Homogenization
,”
Comput. Mater. Sci.
,
184
(
14
), p.
109850
.
48.
Zhang
,
R.
,
Liu
,
Y.
, and
Sun
,
H.
,
2020
, “
Physics-Guided Convolutional Neural Network (PhyCNN) for Data-Driven Seismic Response Modeling
,”
Eng. Struct.
,
215
(
14
), p.
110704
.
49.
Yao
,
H.
,
Ren
,
Y.
, and
Liu
,
Y.
,
2019
, “
FEA-Net: A Deep Convolutional Neural Network with Physics Prior for Efficient Data Driven PDE Learning
,”
AIAA Scitech 2019 Forum
,
San Diego, CA
,
Jan. 7–11
, p.
0680
.
50.
Yao
,
H.
,
Gao
,
Y.
, and
Liu
,
Y.
,
2020
, “
FEA-Net: A Physics-Guided Data-Driven Model for Efficient Mechanical Response Prediction
,”
Comput. Methods Appl. Mech. Eng.
,
363
(
6
), p.
112892
.
51.
Anderson
,
K.
,
Kaufman
,
J. G.
, and
Weritz
,
J.
,
2019
,
ASM Handbook: Volume 2B Properties and Selection of Aluminum Alloys
,
ASM International Almere
,
The Netherlands
.
52.
McFarland
,
J. M.
, and
Riha
,
D. S.
,
2017
, “Probabilistic Analysis Using NESSUS (Numerical Evaluation of Stochastic Structures Under Stress),”
Handbook of Uncertainty Quantification
, R. Ghanem, D. Higdon, and H. Owhadi, eds.,
Springer
,
Cham
, pp.
1733
1764
.
53.
Kirsch
,
E. G.
,
1898
, “
Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre
,”
Z. Ver. Dtsch. Ing.
,
42
, pp.
797
807
.
54.
Joseph
,
V. R.
,
2022
, “
Optimal Ratio for Data Splitting
,”
Stat. Anal. Data Min.
,
15
(
4
), pp.
531
538
.
55.
Ronneberger
,
O.
,
Fischer
,
P.
, and
Brox
,
T.
,
2015
, “
U-Net: Convolutional Networks for Biomedical Image Segmentation
,”
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference
,
Munich, Germany
,
Oct. 5–9
, Proceedings, Part III 18,
Springer International Publishing
, pp.
234
241
.
56.
Thung
,
K. H.
, and
Wee
,
C. Y.
,
2018
, “
A Brief Review on Multi-task Learning
,”
Multimed. Tools Appl.
,
77
(
22
), pp.
29705
29725
.
57.
Paszke
,
A.
,
Gross
,
S.
,
Massa
,
F.
,
Lerer
,
A.
,
Bradbury
,
J.
,
Chanan
,
G.
,
Killeen
,
T.
, et al
,
2019
, “
PyTorch: An Imperative Style, High-Performance Deep Learning Library
,”
33rd Conference on Neural Information Processing Systems
,
Vancouver, Canada
,
Dec. 8–14
.
58.
Richter
,
M. L.
,
Byttner
,
W.
,
Krumnack
,
U.
,
Wiedenroth
,
A.
,
Schallner
,
L.
, and
Shenk
,
J.
,
2021
, “
(Input) Size Matters for CNN Classifiers
,”
Artificial Neural Networks and Machine Learning–ICANN 2021: 30th International Conference on Artificial Neural Networks
,
Bratislava, Slovakia
,
Sept. 14–17
, Proceedings, Part II 30,
Springer International Publishing
, pp.
133
144
.
59.
Alfeld
,
P.
,
1984
, “
A Trivariate Clough-Tocher Scheme for Tetrahedral Data
,”
Comput. Aided Geom. Des.
,
1
(
2
), pp.
169
181
.
60.
Paszke
,
A.
,
Gross
,
S.
,
Chintala
,
S.
,
Chanan
,
G.
,
Yang
,
E. Z.
,
DeVito
,
Z.
,
Lin
,
Z.
,
Desmaison
,
A.
,
Antiga
,
L.
, and
Lerer
,
A.
,
2017
, “
Automatic Differentiation in PyTorch
,” https://openreview.net/pdf?id=BJJsrmfCZ, Accessed April 22, 2023.
61.
Akiba
,
T.
,
Sano
,
S.
,
Yanase
,
T.
,
Ohta
,
T.
, and
Koyama
,
M.
,
2019
, “
Optuna: A Next-Generation Hyperparameter Optimization Framework
,”
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
,
Anchorage, AK
,
Aug. 4–8
, pp.
2623
2631
.
62.
Loshchilov
,
I.
, and
Hutter
,
F.
,
2019
, “
Decoupled Weight Decay Regularization
,”
International Conference on Learning Representations (ICLR)
,
New Orleans, LA
,
May 6–9
.
63.
Bhaduri
,
A.
,
Gupta
,
A.
, and
Graham-Brady
,
L.
,
2022
, “
Stress Field Prediction in Fiber-Reinforced Composite Materials Using a Deep Learning Approach
,”
Composites, Part B
,
238
(
11
), p.
109879
.
You do not currently have access to this content.