Abstract

In this work, we develop an efficient computational framework for process space exploration in laser powder bed fusion (LPBF) based additive manufacturing technology. This framework aims to find suitable processing conditions by characterizing the probability of encountering common build defects. We employ a Bayesian approach toward inferring a functional relationship between LPBF processing conditions and the unobserved parameters of laser energy absorption and powder bed porosity. The relationship between processing conditions and inferred laser energy absorption is found to have good correspondence to the literature measurements of powder bed energy absorption using calorimetric methods. The Bayesian approach naturally enables uncertainty quantification and we demonstrate its utility by performing efficient forward propagation of uncertainties through the modified Eagar–Tsai model to obtain estimates of melt pool geometries, which we validate using out-of-sample experimental data from the literature. These melt pool predictions are then used to compute the probability of occurrence of keyhole and lack-of-fusion based defects using geometry-based criteria. This information is summarized in a probabilistic printability map. We find that the probabilistic printability map can describe the keyhole and lack-of-fusion behavior in experimental data used for calibration, and is capable of generalizing to wider regions of processing space. This analysis is conducted for SS316L, IN718, IN625, and Ti6Al4V using melt pool measurement data retrieved from the literature.

References

1.
Yap
,
C. Y.
,
Chua
,
C. K.
,
Dong
,
Z. L.
,
Liu
,
Z. H.
,
Zhang
,
D. Q.
,
Loh
,
L. E.
, and
Sing
,
S. L.
,
2015
, “
Review of Selective Laser Melting: Materials and Applications
,”
Appl. Phys. Rev.
,
2
(
4
), p.
041101
.
2.
Reijonen
,
J.
,
Björkstrand
,
R.
,
Riipinen
,
T.
,
Que
,
Z.
,
Metsä-Kortelainen
,
S.
, and
Salmi
,
M.
,
2021
, “
Cross-Testing Laser Powder Bed Fusion Production Machines and Powders: Variability in Mechanical Properties of Heat-Treated 316L Stainless Steel
,”
Mater. Des.
,
204
, p.
109684
.
3.
Tang
,
M.
,
Pistorius
,
P. C.
, and
Beuth
,
J. L.
,
2017
, “
Prediction of Lack-of-Fusion Porosity for Powder Bed Fusion
,”
Addit. Manuf.
,
14
, pp.
39
48
.
4.
Cunningham
,
R.
,
Narra
,
S. P.
,
Montgomery
,
C.
,
Beuth
,
J.
, and
Rollett
,
A. D.
,
2017
, “
Synchrotron-Based X-ray Microtomography Characterization of the Effect of Processing Variables on Porosity Formation in Laser Power-Bed Additive Manufacturing of Ti-6Al-4V
,”
JOM
,
69
(
3
), pp.
479
484
.
5.
Scime
,
L.
, and
Beuth
,
J.
,
2019
, “
Melt Pool Geometry and Morphology Variability for the Inconel 718 Alloy in a Laser Powder Bed Fusion Additive Manufacturing Process
,”
Addit. Manuf.
,
29
, p.
100830
.
6.
Khairallah
,
S. A.
,
Anderson
,
A. T.
,
Rubenchik
,
A.
, and
King
,
W. E.
,
2016
, “
Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Mater.
,
108
, pp.
36
45
.
7.
Eagar
,
T.
, and
Tsai
,
N.
,
1983
, “
Temperature Fields Produced by Traveling Distributed Heat Sources
,”
Weld. J.
,
62
(
12
), pp.
346
355
.
8.
Rosenthal
,
D.
,
1946
, “
The Theory of Moving Sources of Heat and Its Application to Metal Treatments
,”
Trans. Am. Soc. Mech. Eng.
,
68
(
8
), pp.
849
865
.
9.
Seede
,
R.
,
Shoukr
,
D.
,
Zhang
,
B.
,
Whitt
,
A.
,
Gibbons
,
S.
,
Flater
,
P.
,
Elwany
,
A.
,
Arroyave
,
R.
, and
Karaman
,
I.
,
2020
, “
An Ultra-High Strength Martensitic Steel Fabricated Using Selective Laser Melting Additive Manufacturing: Densification, Microstructure, and Mechanical Properties
,”
Acta Mater.
,
186
, pp.
199
214
.
10.
Promoppatum
,
P.
, and
Yao
,
S.-C.
,
2019
, “
Analytical Evaluation of Defect Generation for Selective Laser Melting of Metals
,”
Int. J. Adv. Manuf. Technol.
,
103
(
1–4
), pp.
1185
1198
.
11.
Qin
,
J.
,
Hu
,
F.
,
Liu
,
Y.
,
Witherell
,
P.
,
Wang
,
C. C.
,
Rosen
,
D. W.
,
Simpson
,
T. W.
,
Lu
,
Y.
, and
Tang
,
Q.
,
2022
, “
Research and Application of Machine Learning for Additive Manufacturing
,”
Addit. Manuf.
,
52
, p.
102691
.
12.
Tapia
,
G.
,
Khairallah
,
S.
,
Matthews
,
M.
,
King
,
W. E.
, and
Elwany
,
A.
,
2018
, “
Gaussian Process-Based Surrogate Modeling Framework for Process Planning in Laser Powder-Bed Fusion Additive Manufacturing of 316L Stainless Steel
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9
), pp.
3591
3603
.
13.
Kamath
,
C.
,
2016
, “
Data Mining and Statistical Inference in Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
86
(
5
), pp.
1659
1677
.
14.
Saunders
,
R.
,
Rawlings
,
A.
,
Birnbaum
,
A.
,
Iliopoulos
,
A.
,
Michopoulos
,
J.
,
Lagoudas
,
D.
, and
Elwany
,
A.
,
2022
, “
Additive Manufacturing Melt Pool Prediction and Classification Via Multifidelity Gaussian Process Surrogates
,”
Integr. Mater. Manuf. Innov.
,
11
(
4
), pp.
497
515
.
15.
Ning
,
J.
,
Sievers
,
D. E.
,
Garmestani
,
H.
, and
Liang
,
S. Y.
,
2019
, “
Analytical Modeling of In-Process Temperature in Powder Bed Additive Manufacturing Considering Laser Power Absorption, Latent Heat, Scanning Strategy, and Powder Packing
,”
Materials
,
12
(
5
), p.
808
.
16.
Promoppatum
,
P.
,
Yao
,
S.-C.
,
Pistorius
,
P. C.
, and
Rollett
,
A. D.
,
2017
, “
A Comprehensive Comparison of the Analytical and Numerical Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion
,”
Engineering
,
3
(
5
), pp.
685
694
.
17.
Honarmandi
,
P.
,
Seede
,
R.
,
Xue
,
L.
,
Shoukr
,
D.
,
Morcos
,
P.
,
Zhang
,
B.
,
Zhang
,
C.
,
Elwany
,
A.
,
Karaman
,
I.
, and
Arroyave
,
R.
,
2021
, “
A Rigorous Test and Improvement of the Eagar–Tsai Model for Melt Pool Characteristics in Laser Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
47
, p.
102300
.
18.
Patel
,
S.
, and
Vlasea
,
M.
,
2020
, “
Melting Modes in Laser Powder Bed Fusion
,”
Materialia
,
9
, p.
100591
.
19.
Ye
,
J.
,
Khairallah
,
S. A.
,
Rubenchik
,
A. M.
,
Crumb
,
M. F.
,
Guss
,
G.
,
Belak
,
J.
, and
Matthews
,
M. J.
,
2019
, “
Energy Coupling Mechanisms and Scaling Behavior Associated With Laser Powder Bed Fusion Additive Manufacturing
,”
Adv. Eng. Mater.
,
21
(
7
), p.
1900185
.
20.
Trapp
,
J.
,
Rubenchik
,
A. M.
,
Guss
,
G.
, and
Matthews
,
M. J.
,
2017
, “
In Situ Absorptivity Measurements of Metallic Powders During Laser Powder-Bed Fusion Additive Manufacturing
,”
Appl. Mater. Today
,
9
, pp.
341
349
.
21.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification and Management in Additive Manufacturing: Current Status, Needs, and Opportunities
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5–8
), pp.
2855
2874
.
22.
Wang
,
Z.
,
Jiang
,
C.
,
Liu
,
P.
,
Yang
,
W.
,
Zhao
,
Y.
,
Horstemeyer
,
M. F.
,
Chen
,
L.-Q.
,
Hu
,
Z.
, and
Chen
,
L.
,
2020
, “
Uncertainty Quantification and Reduction in Metal Additive Manufacturing
,”
npj Comput. Mater.
,
6
(
1
), pp.
1
10
.
23.
Whalen
,
B. J.
,
Ma
,
J.
, and
Balachandran
,
P. V.
,
2021
, “
A Bayesian Approach to the Eagar-Tsai Model for Melt Pool Geometry Prediction With Implications in Additive Manufacturing of Metals
,”
Integr. Mater. Manuf. Innov.
,
10
(
4
), pp.
597
609
.
24.
von Toussaint
,
U.
,
2011
, “
Bayesian Inference in Physics
,”
Rev. Mod. Phys.
,
83
(
3
), pp.
943
999
.
25.
Tapia
,
G.
,
King
,
W.
,
Johnson
,
L.
,
Arroyave
,
R.
,
Karaman
,
I.
, and
Elwany
,
A.
,
2018
, “
Uncertainty Propagation Analysis of Computational Models in Laser Powder Bed Fusion Additive Manufacturing Using Polynomial Chaos Expansions
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121006
.
26.
Johnson
,
L.
,
Mahmoudi
,
M.
,
Zhang
,
B.
,
Seede
,
R.
,
Huang
,
X.
,
Maier
,
J. T.
,
Maier
,
H. J.
,
Karaman
,
I.
,
Elwany
,
A.
, and
Arróyave
,
R.
,
2019
, “
Assessing Printability Maps in Additive Manufacturing of Metal Alloys
,”
Acta. Mater.
,
176
, pp.
199
210
.
27.
Agrawal
,
A. K.
,
Rankouhi
,
B.
, and
Thoma
,
D. J.
,
2022
, “
Predictive Process Mapping for Laser Powder Bed Fusion: A Review of Existing Analytical Solutions
,”
Curr. Opin. Solid State Mater. Sci.
,
26
(
6
), p.
101024
.
28.
Vela
,
B.
,
Mehalic
,
S.
,
Sheikh
,
S.
,
Elwany
,
A.
,
Karaman
,
I.
, and
Arróyave
,
R.
,
2022
, “
Evaluating the Intrinsic Resistance to Balling of Alloys: A High-Throughput Physics-Informed and Data-Enabled Approach
,”
Addit. Manuf. Lett.
,
3
, p.
100085
.
29.
Ye
,
J.
,
Vaughan
,
M.
,
Karaman
,
I.
,
Arroyave
,
R.
, and
Elwany
,
A.
,
2022
, “
A New Efficient Printability Assessment Framework for Directed Energy Deposition Processes: A Response Surface Method Approach
,”
IIE Annual Conference, Proceedings
,
Seattle, WA
,
May 21–24
, pp.
1
6
.
30.
Pal
,
R.
,
2008
, “
On the Lewis–Nielsen Model for Thermal/Electrical Conductivity of Composites
,”
Compos. Part A: Appl. Sci. Manuf.
,
39
(
5
), pp.
718
726
.
31.
Chen
,
S.
, and
Saxena
,
S.
,
1975
, “
Thermal Conductivity of Argon in the Temperature Range 350 to 2500 K
,”
Mol. Phys.
,
29
(
2
), pp.
455
466
.
32.
Hoshino
,
T.
,
Mito
,
K.
,
Nagashima
,
A.
, and
Miyata
,
M.
,
1986
, “
Determination of the Thermal Conductivity of Argon and Nitrogen Over a Wide Temperature Range Through Data Evaluation and Shock-Tube Experiments
,”
Int. J. Thermophys.
,
7
(
3
), pp.
647
662
.
33.
Nikam
,
S. H.
,
Quinn
,
J.
, and
McFadden
,
S.
,
2021
, “
A Simplified Thermal Approximation Method to Include the Effects of Marangoni Convection in the Melt Pools of Processes That Involve Moving Point Heat Sources
,”
Numer. Heat Transf., Part A: Appl.
,
79
(
7
), pp.
537
552
.
34.
Kaschnitz
,
E.
,
Kaschnitz
,
L.
, and
Heugenhauser
,
S.
,
2019
, “
Electrical Resistivity Measured by Millisecond Pulse Heating in Comparison With Thermal Conductivity of the Superalloy Inconel 625 at Elevated Temperature
,”
Int. J. Thermophys.
,
40
(
3
), p.
27
.
35.
Moges
,
T.
,
Yang
,
Z.
,
Jones
,
K.
,
Feng
,
S.
,
Witherell
,
P.
, and
Lu
,
Y.
,
2021
, “
Hybrid Modeling Approach for Melt-Pool Prediction in Laser Powder Bed Fusion Additive Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
5
), p.
050902
.
36.
Heugenhauser
,
S.
, and
Kaschnitz
,
E.
,
2019
, “
Density and Thermal Expansion of the Nickel-Based Superalloy INCONEL 625 in the Solid and Liquid States
,”
High Temp. High Press.
,
48
(
4
), pp.
381
393
.
37.
Weirather
,
J.
,
Rozov
,
V.
,
Wille
,
M.
,
Schuler
,
P.
,
Seidel
,
C.
,
Adams
,
N. A.
, and
Zaeh
,
M. F.
,
2019
, “
A Smoothed Particle Hydrodynamics Model for Laser Beam Melting of Ni-Based Alloy 718
,”
Comput. Math. Appl.
,
78
(
7
), pp.
2377
2394
.
38.
Basak
,
D.
,
Overfelt
,
R. A.
, and
Wang
,
D.
,
2003
, “
Measurement of Specific Heat Capacity and Electrical Resistivity of Industrial Alloys Using Pulse Heating Techniques
,”
Int. J. Thermophys.
,
24
(
6
), pp.
1721
1733
.
39.
Pottlacher
,
G.
,
Hosaeus
,
H.
,
Kaschnitz
,
E.
, and
Seifter
,
A.
,
2002
, “
Thermophysical Properties of Solid and LiquidInconel 718 Alloy*
,”
Scand. J. Metall.
,
31
(
3
), pp.
161
168
.
40.
Mills
,
K. C.
,
2002
, “Ni – IN 718,”
Recommended Values of Thermophysical Properties for Selected Commercial Alloys
,
Woodhead Publishing Series in Metals and Surface Engineering
,
Woodhead Publishing
, pp.
181
190
.
41.
Kim
,
C. S.
,
1975
, “
Thermophysical Properties of Stainless Steels
,” Technical Report. ANL-75-55,
Argonne National Laboratory
,
Lemont, IL
.
42.
Mills
,
K. C.
,
2002
, “Fe-304 Stainless Steel,”
Recommended Values of Thermophysical Properties for Selected Commercial Alloys
,
Woodhead Publishing Series in Metals and Surface Engineering
,
Woodhead Publishing
, pp.
127
134
.
43.
Mills
,
K. C.
,
2002
, “Ti: Ti-6 Al-4 V (IMI 318),”
Recommended Values of Thermophysical Properties for Selected Commercial Alloys
,
Woodhead Publishing Series in Metals and Surface Engineering
,
Woodhead Publishing
, pp.
211
217
.
44.
Kennedy
,
M. C.
, and
O’Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
,
63
(
3
), pp.
425
464
.
45.
van Ravenzwaaij
,
D.
,
Cassey
,
P.
, and
Brown
,
S. D.
,
2018
, “
A Simple Introduction to Markov Chain Monte Carlo Sampling
,”
Psycho. Bull. Rev.
,
25
(
1
), pp.
143
154
.
46.
Arendt
,
P. D.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2012
, “
Quantification of Model Uncertainty: Calibration, Model Discrepancy, and Identifiability
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100908
.
47.
Kamara
,
A. M.
,
Wang
,
W.
,
Marimuthu
,
S.
, and
Li
,
L.
,
2011
, “
Modelling of the Melt Pool Geometry in the Laser Deposition of Nickel Alloys Using the Anisotropic Enhanced Thermal Conductivity Approach
,”
Proc. Inst. Mech. Eng. B
,
225
(
1
), pp.
87
99
.
48.
Boley
,
C. D.
,
Mitchell
,
S. C.
,
Rubenchik
,
A. M.
, and
Wu
,
S. S. Q.
,
2016
, “
Metal Powder Absorptivity: Modeling and Experiment
,”
Appl. Opt.
,
55
(
23
), p.
6496
.
49.
Nguyen
,
Q. B.
,
Nai
,
M. L. S.
,
Zhu
,
Z.
,
Sun
,
C. -N.
,
Wei
,
J.
, and
Zhou
,
W.
,
2017
, “
Characteristics of Inconel Powders for Powder-Bed Additive Manufacturing
,”
Engineering
,
3
(
5
), pp.
695
700
.
50.
Chen
,
H.
,
Wei
,
Q.
,
Zhang
,
Y.
,
Chen
,
F.
,
Shi
,
Y.
, and
Yan
,
W.
,
2019
, “
Powder-Spreading Mechanisms in Powder-Bed-Based Additive Manufacturing: Experiments and Computational Modeling
,”
Acta Mater.
,
179
, pp.
158
171
.
51.
Hartig
,
F.
,
Minunno
,
F.
, and
Paul
,
S.
,
2019
,
BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics.
R Package Version 0.1.7.
52.
Haario
,
H.
,
Saksman
,
E.
, and
Tamminen
,
J.
,
2001
, “
An Adaptive Metropolis Algorithm
,”
Bernoulli
,
7
(
2
), pp.
223
242
.
53.
Lee
,
S.
,
Peng
,
J.
,
Shin
,
D.
, and
Choi
,
Y. S.
,
2019
, “
Data Analytics Approach for Melt-Pool Geometries in Metal Additive Manufacturing
,”
Sci. Technol. Adv. Mater.
,
20
(
1
), pp.
972
978
.
54.
Scipioni Bertoli
,
U.
,
Wolfer
,
A. J.
,
Matthews
,
M. J.
,
Delplanque
,
J.-P. R.
, and
Schoenung
,
J. M.
,
2017
, “
On the Limitations of Volumetric Energy Density as a Design Parameter for Selective Laser Melting
,”
Mater. Des.
,
113
, pp.
331
340
.
55.
Goossens
,
L. R.
, and
Van Hooreweder
,
B.
,
2021
, “
A Virtual Sensing Approach for Monitoring Melt-Pool Dimensions Using High Speed Coaxial Imaging During Laser Powder Bed Fusion of Metals
,”
Addit. Manuf.
,
40
, p.
101923
.
56.
Hu
,
Z.
,
Nagarajan
,
B.
,
Song
,
X.
,
Huang
,
R.
,
Zhai
,
W.
, and
Wei
,
J.
,
2019
, “
Formation of SS316L Single Tracks in Micro Selective Laser Melting: Surface, Geometry, and Defects
,”
Adv. Mater. Sci. Eng.
,
2019
, p.
e9451406
.
57.
Vaglio
,
E.
,
De Monte
,
T.
,
Lanzutti
,
A.
,
Totis
,
G.
,
Sortino
,
M.
, and
Fedrizzi
,
L.
,
2020
, “
Single Tracks Data Obtained by Selective Laser Melting of Ti6Al4V With a Small Laser Spot Diameter
,”
Data Brief
,
33
, p.
106443
.
58.
Kusuma
,
C.
,
2016
, “
The Effect of Laser Power and Scan Speed on Melt Pool Characteristics of Pure Titanium and Ti-6Al-4V Alloy for Selective Laser Melting
,” Master’s thesis,
Wright State University
.
59.
Dilip
,
J. J. S.
,
Zhang
,
S.
,
Teng
,
C.
,
Zeng
,
K.
,
Robinson
,
C.
,
Pal
,
D.
, and
Stucker
,
B.
,
2017
, “
Influence of Processing Parameters on the Evolution of Melt Pool, Porosity, and Microstructures in Ti-6Al-4V Alloy Parts Fabricated by Selective Laser Melting
,”
Progr. Addit. Manuf.
,
2
(
3
), pp.
157
167
.
60.
Brown
,
D. A.
, and
Atamturktur
,
S.
,
2018
, “
Nonparametric Functional Calibration of Computer Models
,”
Statist. Sinica
,
28
(
2
), pp.
721
742
.
61.
Pratola
,
M.
,
Chipman
,
H.
,
George
,
E.
, and
McCulloch
,
R.
,
2020
, “
Heteroscedastic BART Using Multiplicative Regression Trees
,”
J. Comput. Graph. Stat.
,
29
(
2
), pp.
405
417
.
62.
McCulloch
,
R.
,
Pratola
,
M.
, and
Chipman
,
H.
,
2019
,
rbart: Bayesian Trees for Conditional Mean and Variance.
R Package Version 1.0.
63.
Feinberg
,
J.
, and
Langtangen
,
H. P.
,
2015
, “
Chaospy: An Open Source Tool for Designing Methods of Uncertainty Quantification
,”
J. Comput. Sci.
,
11
, pp.
46
57
.
64.
Xiu
,
D.
,
2010
,
Numerical Methods for Stochastic Computations: A Spectral Method Approach
,
Princeton University Press
,
Princeton, NJ
.
65.
Zhang
,
D.
,
Zhang
,
P.
,
Liu
,
Z.
,
Feng
,
Z.
,
Wang
,
C.
, and
Guo
,
Y.
,
2018
, “
Thermofluid Field of Molten Pool and Its Effects During Selective Laser Melting (SLM) of Inconel 718 Alloy
,”
Addit. Manuf.
,
21
, pp.
567
578
.
66.
Nikam
,
S. H.
,
Quinn
,
J.
, and
McFadden
,
S.
,
2021
, “
A Simplified Thermal Approximation Method to Include the Effects of Marangoni Convection in the Melt Pools of Processes That Involve Moving Point Heat Sources
,”
Numer. Heat Transf. Part A: Appl.
,
79
(
7
), pp.
537
552
.
67.
Lane
,
B.
,
Zhirnov
,
I.
,
Mekhontsev
,
S.
,
Grantham
,
S.
,
Ricker
,
R.
,
Rauniyar
,
S.
, and
Chou
,
K.
,
2020
, “
Transient Laser Energy Absorption, Co-Axial Melt Pool Monitoring, and Relationship to Melt Pool Morphology
,”
Addit. Manuf.
,
36
, p.
101504
.
68.
Dilip
,
J.
,
Anam
,
M. A.
,
Pal
,
D.
, and
Stucker
,
B.
,
2016
, “
A Short Study on the Fabrication of Single Track Deposits in SLM and Characterization
,”
2016 International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 8–10
.
69.
Liu
,
B.
,
Fang
,
G.
, and
Lei
,
L.
,
2021
, “
An Analytical Model for Rapid Predicting Molten Pool Geometry of Selective Laser Melting (SLM)
,”
Appl. Math. Model.
,
92
, pp.
505
524
.
70.
Liu
,
S.
,
Lee
,
K.
, and
Balachandran
,
P. V.
,
2022
, “
Integrating Machine Learning With Mechanistic Models for Predicting the Yield Strength of High Entropy Alloys
,”
J. Appl. Phys.
,
132
(
10
), p.
105105
.
You do not currently have access to this content.