Abstract

Recent advances in the digitization of manufacturing have prompted ASME and International Organization for Standardization (ISO) standards committees to reexamine the definition of datums. Any new definition of datums considered by the standards committees should cover all datum feature types used in design and support both traditional metrological methods and new digital measurement techniques. This is a challenging task that requires some careful compromise. This paper describes and analyzes various alternatives considered by the standards committees. Among them is a new mathematical definition of datums based on constrained least-squares fitting. It seems to provide the best compromise and has the potential to support advanced manufacturing that is increasingly dependent on digital technologies.

References

1.
ASME
,
2018
,
Dimensioning and Tolerancing
,
The American Society of Mechanical Engineers
,
New York
.
2.
ASME
,
2019
,
Mathematical Definition of Dimensioning and Tolerancing Principles
,
The American Society of Mechanical Engineers
,
New York
.
3.
ISO
,
2017
,
ISO 1101-2017, Geometrical Product Specifications (GPS)—Geometrical Tolerancing—Tolerances of Form, Orientation, Location and Run-Out
,
International Organization for Standardization
,
Geneva
.
4.
ISO
,
2011
,
ISO 5459-2011, Geometrical Product Specifications (GPS)—Geometrical Tolerancing—Datums and Datum Systems
,
International Organization for Standardization
,
Geneva
.
5.
ASME
,
2012
,
ASME Y14.41-2012, Digital Product Definition Data Practices
,
The American Society of Mechanical Engineers
,
New York
.
6.
Krulikowski
,
A.
,
2012
,
Fundamentals of Geometric Dimensioning and Tolerancing
, 3rd ed.,
Effective Training Inc.
,
Westland, MI
.
7.
Srinivasan
,
V.
,
2014
,
CIRP Encyclopedia of Production Engineering
,
L.
Laperrière
, and
G.
Reinhart
, eds.,
Springer
,
New York
.
8.
Wick
,
C.
, and
Veilleux
,
R. F.
,
1987
,
Tool and Manufacturing Engineers Handbook, Vol. IV Quality Control and Assembly
, 4th ed.,
Society of Manufacturing Engineers
,
Dearborn, MI
.
9.
Shakarji
,
C. M.
,
2011
, “Coordinate Measuring System Algorithms and Filters,”
Coordinate Measuring Machines and Systems
,
R. J.
Hocken
, and
P. H.
Pereira
, eds.,
CRC Press
,
Boca Raton
, FL, pp.
153
182
.
10.
The Internet of Things in Here, and It Isn’t a Thing
,”
The Wall Street Journal
,
Aug
.
21
,
2016
.
11.
Hedberg
,
T. D.
,
Lubell
,
J.
,
Fischer
,
L.
,
Maggiano
,
L.
, and
Barnard Feeney
,
A.
,
2016
, “
Testing the Digital Thread in Support of Model-Based Manufacturing and Inspection
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
2
), p.
021001
.
12.
Hedberg
,
T. D.
, and
Carlisle
,
M.
,
2017
, “
Proceedings of the 2017 Model-Based Enterprise (MBE) Summit
,” NIST AMS 100-11, Gaithersburg, MD.
13.
Germany Bets on Smart Factories to Keep Its Manufacturing Edge
,”
The Wall Street Journal
, Oct. 26, 2014.
14.
Jeschke
,
S.
,
Brecher
,
C.
,
Song
,
H.
, and
Rawat
,
D. B.
,
2017
,
Industrial Internet of Things: Cybermanufacturing Systems
,
Springer
,
New York
.
15.
Clement
,
A.
,
Riviere
,
A.
, and
Temmerman
,
M.
,
1994
,
Cotation Tridimensionnelle des Systemes Mechaniques
,
PYC Edition
,
Ivry-sur-Seine
.
16.
Srinivasan
,
V.
,
1999
, “
A Geometrical Product Specification Language Based on a Classification of Symmetry Groups
,”
Comput. Aided Des.
,
31
(
11
), pp.
659
668
.
17.
Srinivasan
,
V.
,
2014
,
Theory of Dimensioning: An Introduction to Parameterizing Geometric Models
,
Marcel Dekker
,
New York
.
18.
ASME B1.13M
,
2015
,
Metric Screw Threads: M Profile
,
The American Society of Mechanical Engineers
,
New York
.
19.
Morse
,
E. P.
, and
Srinivasan
,
V.
,
2013
, “
Size Tolerancing Revisited: A Basic Notion and Its Evolution in Standards
,”
Proc. Inst. Mech. Eng. Part B
,
227
(
5
), pp.
662
671
.
20.
Slocum
,
A.
,
2010
, “
Kinematic Couplings: A Review of Design Principles and Applications
,”
Int. J. Mach. Tools Manuf.
,
50
(
4
), pp.
310
327
.
21.
Shakarji
,
C. M.
, and
Srinivasan
,
V.
,
2013
, “
Theory and Algorithms for L1 Fitting Used for Planar Datum Establishment in Support of Tolerancing Standards
,”
Proceedings of the ASME 2013 IDETC/CIE Conferences
,
Portland, OR
,
Aug. 4–7
, Vol. 55867, p. V02BT02A010; 1–8.
22.
Shakarji
,
C. M.
, and
Srinivasan
,
V.
,
2014
, “
An Improved L1 Based Algorithm for Standardized Planar Datum Establishment
,”
Proceedings of the ASME 2014 IDETC/CIE Conferences
,
Buffalo, NY
,
Aug. 17–20
, vol. 46292, p. V01BT02A019; 1–10.
23.
Shakarji
,
C. M.
, and
Srinivasan
,
V.
,
2015
, “
Datum Planes Based on a Constrained L1 Norm
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
4
), p.
011002
.
24.
Butler
,
B. P.
,
Forbes
,
A. B.
, and
Harris
,
P. M.
,
1994
, “
Algorithms for Geometric Tolerance Assessment
,” NPL Report DITC 228/94, National Physical Laboratory.
25.
Forbes
,
A.
,
1991
, “
Least-Squares Best-Fit Geometric Elements
,” National Physical Laboratory Report, DITC 140/89.
26.
Srinivasan
,
V.
,
Shakarji
,
C. M.
, and
Morse
,
E. P.
,
2012
, “
On the Enduring Appeal of Least-Squares Fitting in Computational Coordinate Metrology
,”
ASME J. Comput. Inf. Sci. Eng.
,
12
(
1
), p.
011008
.
27.
Shakarji
,
C. M.
, and
Srinivasan
,
V.
,
2013
, “
Theory and Algorithms for Weighted Total Least-Squares Fitting of Lines, Planes, and Parallel Planes to Support Tolerancing Standards
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
3
), p. 031008.
28.
Anthony
,
G. T.
,
Anthony
,
H. M.
,
Bittner
,
B.
,
Butler
,
B. P.
,
Cox
,
M. G.
,
Drieschner
,
R.
,
Elligsen
,
R.
, et al
,
1993
, “
Chebyshev Best-Fit Geometric Elements
,” NPL Report DITC 221/93,
National Physical Laboratory
.
29.
Zhang
,
H.
, and
Rou
,
U.
,
1993
, “
Criteria for Establishing Datums in Manufactured Parts
,”
J. Manuf. Syst.
,
12
(
1
), pp.
36
50
.
30.
Shakarji
,
C. M.
, and
Srinivasan
,
V.
,
2015
, “
A Constrained L2 Based Algorithm for Standardized Planar Datum Establishment
,”
Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition
,
Houston, TX
,
Nov. 13–19
, Vol. 57540, p. V011T14A023; 1–10.
31.
Shakarji
,
C. M.
, and
Srinivasan
,
V.
,
2016
, “
Theory and Algorithm for Planar Datum Establishment Using Constrained Total Least-Squares
,”
14th CIRP Conference on Computer Aided Tolerancing
,
Gothenburg, Sweden
,
May 18–20
.
32.
Shakarji
,
C. M.
, and
Srinivasan
,
V.
,
2016
, “
Computational Investigations for a New, Constrained Least-Squares Datum Definition for Circles, Cylinders, and Spheres
,”
Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition
,
Phoenix, AZ
,
Nov. 11–17
, Vol. 50657, p. V011T15A007; 1–8.
33.
Shakarji
,
C. M.
, and
Srinivasan
,
V.
,
2017
, “
Optimality Conditions for Constrained Least-Squares Fitting of Circles, Cylinders, and Spheres to Establish Datums
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
3
), p.
031008
. .
34.
Shakarji
,
C. M.
, and
Srinivasan
,
V.
,
2019
, “
Convexity and Optimality Conditions for Constrained Least-Squares Fitting of Planes and Parallel Planes to Establish Datums
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
1
), p.
011002
.
35.
Shakarji
,
C. M.
, and
Srinivasan
,
V.
,
2018
, “
Toward a New Mathematical Definition of Datums in Standards to Support Advanced Manufacturing
,”
Proceedings of the ASME 2018 Manufacturing Science and Engineering Conference
,
College Station, TX
,
June 18–22
, Vol. 51371, p. V003T02A016; 1–12.
You do not currently have access to this content.