Abstract

The wheel wear situation on the railway vehicles will affect the train running stability and riding comfort. Thus, the prediction model of wheel tread wear is critical for anticipating the wheelset state information and formulating the reprofiling strategy. However, for the wheel wear analysis, the physical simulation models based on vehicle track system dynamics are time consuming and do not have universal adaptability. Moreover, it underutilized the large amount of raw data accumulated by the wheelset detection system in the long-term service of the vehicle. This article presents a data-driven method for precisely predicting wheel wear in future. This method includes nonlinear autoregressive models with exogenous inputs neural networks (NARXNNs), Levenberg Marquardt (LM), and orthogonal matching pursuit (OMP) algorithm, i.e., LM-OMP-NARXNN, and LM-OMP is used to ascertain the network weight and nodes of the prediction model structure. Datasets of the case study are derived from a motor station for three consecutive years. The experiment results demonstrate that the proposed method leads to a more compact model with the reduced size. Besides, it has higher accuracy in the prediction of wheelset tread wear status in the short term when compared with other prediction models and other training algorithms used in NARXNN.

References

1.
Li
,
Y.
,
Ren
,
Z.
,
Enblom
,
R.
,
Stichel
,
S.
, and
Li
,
G.
,
2020
, “
Wheel Wear Prediction on a High-Speed Train in China
,”
Veh. Syst. Dyn.
,
58
(
12
), pp.
1839
1858
.
2.
Zhu
,
A.
,
Yang
,
S.
,
Li
,
Q.
,
Yang
,
J.
,
Li
,
X.
, and
Xie
,
Y.
,
2019
, “
Simulation and Measurement Study of Metro Wheel Wear Based on the Archard Model
,”
Ind. Lubr. Tribol.
,
71
(
2
), pp.
284
294
.
3.
Luo
,
R.
,
Shi
,
H.
,
Teng
,
W.
, and
Song
,
C.
,
2017
, “
Prediction of Wheel Profile Wear and Vehicle Dynamics Evolution Considering Stochastic Parameters for High-Speed Train
,”
Wear
,
392–393
, pp.
126
138
.
4.
Ignesti
,
M.
,
Innocenti
,
A.
,
Marini
,
L.
,
Meli
,
E.
, and
Rindi
,
A.
,
2014
, “
Development of a Model for the Simultaneous Analysis of Wheel and Rail Wear in Railway Systems
,”
Multibody Syst. Dyn.
,
31
(
2
), pp.
191
240
.
5.
Zhu
,
W.
,
Yang
,
D.
,
Guo
,
Z.
,
Huang
,
J.
, and
Huang
,
Y.
,
2015
, “
Data-Driven Wheel Wear Modeling and Reprofiling Strategy Optimization for Metro Systems
,”
Transp. Res. Rec.
,
2476
(
1
), pp.
67
76
.
6.
Zhu
,
W.
,
Yang
,
D.
, and
Huang
,
J.
,
2018
, “
A Hybrid Optimization Strategy for the Maintenance of the Wheels of Metro Vehicles: Vehicle Turning, Wheel Re-Profiling, and Multi-Template Use
,”
Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit.
,
232
(
3
), pp.
832
841
.
7.
Jiang
,
Z.
,
Banjevic
,
D.
,
E
,
M.
, and
Li
,
B.
,
2017
, “
Optimizing the Re-Profiling Policy Regarding Metropolitan Train Wheels Based on a Semi-Markov Decision Process
,”
Proc. Inst. Mech. Eng. Part O: J. Risk Reliab.
,
231
(
5
), pp.
495
507
.
8.
Almeida Costa
,
M.
,
Azevedo Peixoto Braga
,
J. P.
, and
Ramos Andrade
,
A.
,
2021
, “
A Data-Driven Maintenance Policy for Railway Wheelset Based on Survival Analysis and Markov Decision Process
,”
Qual. Reliab. Eng. Int.
,
37
(
1
), pp.
176
198
.
9.
Zhu
,
A.
,
Yang
,
S.
,
Li
,
Q.
,
Yang
,
J.
,
Fu
,
C.
,
Zhang
,
J.
, and
Yao
,
D.
,
2019
, “
Research on Prediction of Metro Wheel Wear Based on Integrated Data-Model-Driven Approach
,”
IEEE Access
,
7
, pp.
178153
178166
.
10.
Chi
,
Z.
,
Lin
,
J.
,
Chen
,
R.
, and
Huang
,
S.
,
2020
, “
Data-Driven Approach to Study the Polygonization of High-Speed Railway Train Wheel-Sets Using Field Data of China’s HSR Train
,”
Measurement
,
149
, p.
107022
.
11.
Wang
,
L.
,
Xu
,
H.
,
Yuan
,
H.
,
Zhao
,
W.
, and
Chen
,
X.
,
2015
, “
Optimizing the Re-Profiling Strategy of Metro Wheels Based on a Data-Driven Wear Model
,”
Eur. J. Oper. Res.
,
242
(
3
), pp.
975
986
.
12.
Zeng
,
Y.
,
Song
,
D.
,
Zhang
,
W.
,
Zhou
,
B.
,
Xie
,
M.
, and
Tang
,
X.
,
2020
, “
A New Physics-Based Data-Driven Guideline for Wear Modelling and Prediction of Train Wheels
,”
Wear
,
456–457
, p.
203355
.
13.
Tao
,
G.
,
Du
,
X.
,
Zhang
,
H.
,
Wen
,
Z.
,
Jin
,
X.
, and
Cui
,
D.
,
2017
, “
Development and Validation of a Model for Predicting Wheel Wear in High-Speed Trains
,”
J. Zhejiang Univ. Sci. A
,
18
(
8
), pp.
603
616
.
14.
Suykens
,
J. A. K.
, and
Vandewalle
,
J.
,
1999
, “
Least Squares Support Vector Machine Classifiers
,”
Neural Process. Lett.
,
9
(
3
), pp.
293
300
.
15.
Hua
,
S.
,
Yuan
,
J.
, and
Ding
,
W.
,
2016
, “
LS-SVM-Based Prediction Model of Tread Wear Optimized by PSO-GA-LM
,”
International Conference on Cloud Computing and Security
,
Nanjing, China
,
July 29–31
, p. 510–521.
16.
Fan
,
N.
,
Wang
,
S.
,
Liu
,
C.
, and
Liu
,
X.
,
2017
, “
Wheel Wear Prediction of High-Speed Train Using NAR and BP Neural Networks
,”
2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData)
,
Exeter, UK
,
June 21–23
, IEEE, p.
126
.
17.
Yin
,
J.
,
Su
,
S.
,
Xun
,
J.
,
Tang
,
T.
, and
Liu
,
R.
,
2020
, “
Data-Driven Approaches for Modeling Train Control Models: Comparison and Case Studies
,”
ISA Trans.
,
98
, pp.
349
363
.
18.
Shebani
,
A.
, and
Iwnicki
,
S.
,
2018
, “
Prediction of Wheel and Rail Wear Under Different Contact Conditions Using Artificial Neural Networks
,”
Wear
,
406–407
, pp.
173
184
.
19.
Mehmood
,
R.
,
Bie
,
R.
,
Dawood
,
H.
, and
Ahmad
,
H.
,
2015
, “
Fuzzy Clustering by Fast Search and Find of Density Peaks
,”
2015 International Conference on Identification, Information, and Knowledge in the Internet of Things(IIKI)
,
Beijing, China
,
Oct. 22–23
, IEEE, p.
258
.
20.
Kim
,
H. S.
,
Eykholt
,
R.
, and
Salas
,
J. D.
,
1999
, “
Nonlinear Dynamics, Delay Times, and Embedding Windows
,”
Phys. D
,
127
(
1
), pp.
48
60
.
21.
Cai
,
Z.
,
Wei
,
C.
, and
Yuan
,
Y.
,
2011
, “
An Efficient Method for Electric Meter Readings Automatic Location and Recognition
,”
Procedia Eng.
,
23
, pp.
565
571
.
22.
Mohd
,
R.
,
Butt
,
M. A.
, and
Baba
,
M. Z.
,
2020
, “
GWLM-NARX Grey Wolf Levenberg-Marquardt-Based Neural Network for Rainfall Prediction
,”
Data Technol. Appl.
,
54
(
1
), pp.
85
102
.
23.
Mohd
,
R.
,
Butt
,
M. A.
, and
Zaman Baba
,
M.
,
2018
, “
SALM-NARX: Self Adaptive LM-Based NARX Model for the Prediction of Rainfall
,”
2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 2018 2nd International Conference on
,
Vijayawada, India
,
Aug. 30–31
.
24.
Cadenas
,
E.
,
Rivera
,
W.
,
Campos-Amezcua
,
R.
, and
Cadenas
,
R.
,
2016
, “
Wind Speed Forecasting Using the NARX Model, Case: La Mata, Oaxaca, México
,”
Neural Comput. Appl.
,
27
(
8
), pp.
2417
2428
.
25.
Di Piazza
,
A.
,
Di Piazza
,
M. C.
,
La Tona
,
G.
, and
Luna
,
M.
,
2021
, “
An Artificial Neural Network-Based Forecasting Model of Energy-Related Time Series for Electrical Grid Management
,”
Math. Comput. Simul.
,
184
, pp.
294
305
.
26.
Wang
,
J.
,
Geng
,
Y.
,
Zhao
,
Q.
,
Zhang
,
Y.
,
Miao
,
Y.
,
Yuan
,
X.
,
Jin
,
Y.
, and
Zhang
,
W.
,
2021
, “
Water Quality Prediction of Water Sources Based on Meteorological Factors Using the CA-NARX Approach
,”
Environ. Model. Assess.
,
26
(
4
), pp.
529
541
.
27.
Zhe
,
X.
,
Jie
,
Y.
,
Hua
,
C.
,
Ya
,
K.
, and
Bishi
,
H.
,
2015
, “
Water Distribution Network Modeling Based on NARX
,”
IFAC-PapersOnLine
,
48
(
11
), pp.
72
77
.
28.
Spiridonakos
,
M. D.
, and
Chatzi
,
E. N.
,
2015
, “
Metamodeling of Dynamic Nonlinear Structural Systems Through Polynomial Chaos NARX Models
,”
Comput. Struct.
,
157
, pp.
99
113
.
29.
Piotrowski
,
A. P.
, and
Napiorkowski
,
J. J.
,
2011
, “
Optimizing Neural Networks for River Flow Forecasting—Evolutionary Computation Methods Versus the Levenberg–Marquardt Approach
,”
J. Hydrol. (Amsterdam)
,
407
(
1
), pp.
12
27
.
30.
Tang
,
X.
,
Wang
,
X.
, and
Zhang
,
L.
,
2017
, “
Orthogonal Matching Pursuit for Multilayer Perceptions Neural Networks Model Reduction
,”
Intelligent Computing, Networked Control, and Their Engineering Applications
,
Nanjing, China
,
Sept. 22–24
, LSMS/ICSEE, 762, pp.
53
61
.
31.
Wang
,
J.
,
Kwon
,
S.
, and
Shim
,
B.
,
2012
, “
Generalized Orthogonal Matching Pursuit
,”
IEEE Trans. Sig. Process.
,
60
(
12
), pp.
6202
6216
.
32.
Yong
,
W.
,
Lingyun
,
P.
, and
Jia
,
W.
,
2020
, “
Statistical Analysis and ARMA Modeling for the Big Data of Marathon Score
,”
Sci. Sports
,
35
(
6
), pp.
375
385
.
You do not currently have access to this content.