Abstract

Those methods that are applied to evaluate car sound quality by means of the scoring mode cannot guarantee the universality of results. Some studies have shown that the sound-induced change of electroencephalograph (EEG) can reflect human cerebral activities and mental perceptions. Thus, EEG is introduced here to evaluate the car sound quality, and a new method is put forward to map the powerful sound quality on account of EEG-based physiological acoustic index (EPAI). Twelve types of EEG features are selected in views of time and frequency domains and entropy feature to establish the feature matrix, and the difference of car sounds with the powerful sound quality are identified by means of five classifiers. Then, the correlation between the powerful sound quality and 12 types of EEG features is further analyzed to screen out the effective EEG features that are strongly related to the powerful car sound quality. Subsequently, seven EPAIs are defined by means of regression model based on three effective EEG features, which are the second-order difference (SOD), power spectral density (PSD) of gamma (PSD_γ), and differential entropy (DE), respectively. Our results show that the support vector machine (SVM) and linear discriminant analysis (LDA) models can be applied to effectively identify the difference of powerful car sounds, and the correlations between SOD, PSD_γ, and DE and the powerful sound quality are high, which are up to 0.86, 0.88, and 0.85, respectively, and our EPAIs 1, 2, and 4 can map the powerful car sound quality where the EPAI 4 results in the best evaluation effect. It is also proved that our EPAIs can reflect the subjective perception of participants under stimulation of the powerful sound quality, and EEG can be used as an evaluation method of car sound quality.

References

1.
Editorial Department of China J.
,
2017
, “
Review on China’s Automotive Engineering Research Progress
,”
China J. Higw. Transp.
,
30
(
6
), pp.
1
197
.
2.
Genuit
,
K.
,
2008
, “
Product Sound Quality of Vehicle Noise—A Permanent Challenge for NVH Measurement Technologies
,” SAE Technical Paper, SAE International.
3.
Schneider
,
M.
,
Wilhelm
,
M.
, and
Alt
,
N.
,
1995
, “
Development of Vehicle Sound Quality—Targets and Methods
,” SAE Technical Paper No. 951283, SAE International.
4.
Genuit
,
K.
,
2004
, “
The Sound Quality of Vehicle Interior Noise: A Challenge for the NVH Engineers
,”
Int. J. Veh. Noise Vib.
,
1
(
1/2
), pp.
158
168
.
5.
Tan
,
Z. F.
, and
Tan
,
G. P.
,
2012
, “
Evaluation Method of Vehicle Sound Quality
,”
Appl. Mech. Mater.
,
178–181
, pp.
2829
2833
.
6.
Schiffbänker
,
H.
,
Brandl
,
F.
, and
Thien
,
G.
,
1991
, “
Development and Application of an Evaluation Technique to Assess the Subjective Character of Engine Noise
,” SAE Technical Paper 911081, SAE International.
7.
Noumura
,
K.
, and
Yoshida
,
J.
,
2003
, “
Perception Modeling and Quantification of Sound Quality in Cabin
,” SAE Technical Paper, SAE International.
8.
Hoeldrich
,
R.
, and
Pflueger
,
M.
,
1999
, “
A Generalized Psychoacoustical Model of Modulation Parameters (Roughness) for Objective Vehicle Noise Quality Evaluation
,” SAE Technical Paper, SAE International.
9.
Jae-Eun
,
J.
,
In-Hyung
,
Y.
,
Aminuddin bin
,
A.
,
Kyung-Joon
,
C.
, and
Jae-Eung
,
O.
,
2013
, “
Development of a New Sound Quality Metric for Evaluation of the Interior Noise in a Passenger car Using the Logarithmic Mahalanobis Distance
,”
Proc. Inst. Mech. Eng. Part D: J. Automob. Eng.
,
227
(
10
), pp.
1363
1363
.
10.
Fuwu
,
Y.
,
Shenghao
,
X.
,
Zhien
,
L.
,
Songze
,
D.
, and
Chihua
,
L.
,
2018
, “
Study on the Order Target of the Sporty Sound Quality of the Vehicle Exhaust Noise Under Acceleration
,”
Proc. Inst. Mech. Eng. Part D. J. Automob. Eng.
,
233
(
8
), pp.
2085
2095
.
11.
Biermayer
,
W.
,
Thomann
,
S.
, and
Brandl
,
F.
,
2001
, “
A Software Tool for Noise Quality and Brand Sound Development
,” SAE Technical Paper 2001-01-1573, SAE International, Detroit, MI.
12.
Yasuo
,
I.
,
Masashi
,
I.
,
Koji
,
I.
, and
Yamashita
,
T.
,
2003
, “
A Support System for Development of Sporty Sound and its Application
,” SAE Technical Paper, SAE International, Detroit, MI.
13.
Hideo
,
T.
,
Takeo
,
H.
, and
Shigeko
,
H.
,
1993
, “
Quantification of Subjective Unpleasantness Using Roughness Level
,” SAE Technical Paper, SAE International, Detroit, MI.
14.
Ohsasa
,
Y.
, and
Kadomatsu
,
K.
,
1995
, “
Sound Quality Evaluation of Exhaust Note During Acceleration
,” SAE Technical Paper, SAE International, Detroit, MI.
15.
Anastasios
,
A.
,
Jeff
,
O.
,
Todd
,
T.
, and
Kiran
,
G.
,
2015
, “
Automobile Powertrain Sound Quality Development Using a Design for Six Sigma (DFSS) Approach
,” SAE Technical Paper, SAE International, Detroit, MI.
16.
Chang
,
K.
,
Kim
,
S.
, and
Park
,
D.
,
2017
, “
A Research on Brand Sound Positioning and Implementing With Active Sound Design
,” SAE Technical Paper, SAE International, Detroit, MI.
17.
Hideki
,
M.
,
Hitoshi
,
T.
,
Hiroyuki
,
T.
, and
Ohsasa
,
Y.
,
1993
, “
Sound Quality Evaluation of Passenger Vehicle Interior Noise
,” SAE Technical Paper, SAE International, Detroit, MI.
18.
Parizet
,
E.
,
2002
, “
Paired Comparison Listening Tests and Circular Error Rates
,”
Acta. Acust. United With Acust.
,
88
(
88
), pp.
594
598
.
19.
Ellermeier
,
W.
,
Mader
,
M.
, and
Daniel
,
P.
,
2004
, “
Scaling the Unpleasantness of Sounds According to the BTL Model: Ratio-Scale Representation and Psychoacoustical Analysis
,”
Acta. Acust. United With Acust.
,
90
(
1
), pp.
101
107
.
20.
Moon
,
S. E.
, and
Lee
,
J. S.
,
2016
, “
Implicit Analysis of Perceptual Multimedia Experience Based on Physiological Response: A Review
,”
IEEE Trans. Multimedia
,
19
(
2
), pp.
340
353
.
21.
Geethanjali
,
B.
,
Adalarasu
,
K.
,
Mohan
,
J.
, and
Seshadri
,
N.
,
2018
, “
Music Induced Brain Functional Connectivity Using EEG Sensors: A Study on Indian Music
,”
IEEE Sens. J. Multimedia
,
19
(
4
), pp.
1499
1507
.
22.
Bhatti
,
A. M.
,
Majid
,
M.
,
Anwar
,
S. M.
, and
Khan
,
B.
,
2016
, “
Human Emotion Recognition and Analysis in Response to Audio Music Using Brain Signals
,”
Comput. Hum. Behav.
,
65
(
C
), pp.
267
275
.
23.
Lin
,
Y. P.
,
Wang
,
C. H.
,
Jung
,
T. P.
,
Wu
,
T. L.
,
Jeng
,
S. K.
,
Duann
,
J. R.
, and
Chen
,
J.
,
2010
, “
EEG-Based Emotion Recognition in Music Listening
,”
IEEE Trans. Biomed. Eng.
,
57
(
7
), pp.
1798
1806
.
24.
Poikonen
,
H.
,
Alluri
,
V.
,
Brattico
,
E.
,
Lartillot
,
O.
,
Tervaniemi
,
M.
, and
Huotilainen
,
M.
,
2016
, “
Event-Related Brain Responses While Listening to Entire Pieces of Music
,”
Neuroscience
,
312
, pp.
58
73
.
25.
Tsang
,
C.
,
Trainor
,
L.
,
Santesso
,
D.
,
Tasker
,
S.
, and
Schmidt
,
L.
,
2001
, “
Frontal EEG Responses as a Function of Affective Musical Features
,”
Ann. N. Y. Acad. Sci.
,
930
(
1
), pp.
439
442
.
26.
Kai
,
S.
,
Fujinaga
,
I.
, and
Mcadams
,
S.
,
2016
, “
A Comparison of Approaches to Timbre Descriptors in Music Information Retrieval and Music Psychology
,”
J. New Music Res.
,
45
(
1
), pp.
1
15
.
27.
Phillips-Silver
,
J.
, and
Trainor
,
L. J.
,
2005
, “
Feeling the Beat: Movement Influences Infant Rhythm Perception
,”
Science
,
308
(
5727
), p.
1430
.
28.
Geng
,
B.
,
Liu
,
K.
,
Duan
,
Y.
,
Song
,
Q.
, and
Shi
,
J.
,
2020
, “
A Novel EEG Based Directed Transfer Function for Investigating Human Perception to Audio Noise
,”
2020 International Wireless Communications and Mobile Computing (IWCMC)
, pp.
923
928
.
29.
Di
,
G. Q.
, and
Wu
,
S. X.
,
2015
, “
Emotion Recognition From Sound Stimuli Based on Back-Propagation Neural Networks and Electroencephalograms
,”
J. Acoust. Soc. Am.
,
138
(
2
), pp.
994
1002
.
30.
Sammler
,
D.
,
Grigutsch
,
M.
,
Fritz
,
T.
, and
Koelsch
,
S.
,
2010
, “
Music and Emotion: Electrophysiological Correlates of the Processing of Pleasant and Unpleasant Music
,”
Psychophysiology
,
44
(
2
), pp.
293
304
.
31.
Lee
,
S. M.
, and
Lee
,
S. K.
,
2014
, “
Objective Evaluation of Human Perception of Automotive Sound Based on Physiological Signal of Human Brain
,”
Int. J. Automot. Technol.
,
15
(
2
), pp.
273
282
.
32.
Lee
,
Y. J.
,
Shin
,
T. J.
, and
Lee
,
S. K.
,
2013
, “
Sound Quality Analysis of a Passenger Car Based on Electroencephalography
,”
J. Mech. Sci. Technol.
,
27
(
2
), pp.
319
325
.
33.
Nishimura
,
K.
, and
Mitsukura
,
Y.
,
2013
, “
Sound Quality Indicating System Using EEG and GMDH-Type Neural Network
,”
2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)
,
Kaohsiung, Taiwan
,
Oct. 29–Nov. 1
, IEEE, pp.
1
5
.
34.
Xieqi
,
C.
,
Jianhui
,
L.
,
Hang
,
J.
,
Yan
,
H.
, and
Zechao
,
L.
, “
The Psychoacoustics Annoyance Research Based on EEG Rhythms for Passengers in High-Speed Railway
,”
Appl. Acoust.
,
171
, p.
107575
.
35.
Li
,
Z. G.
,
Di
,
G. Q.
, and
Jia
,
L.
,
2014
, “
Relationship Between Electroencephalogram Variation and Subjective Annoyance Under Noise Exposure
,”
Appl. Acoust.
,
75
(
1
), pp.
37
42
.
36.
Lenz
,
D.
,
Schadow
,
J.
,
Thaerig
,
S.
,
Busch
,
N.
, and
Herrmann
,
C.
,
2007
, “
What's That Sound? Matches With Auditory Long-Term Memory Induce Gamma Activity in Human EEG
,”
Int. J. Psychophysiol.
,
64
(
1
), pp.
31
38
.
37.
Kalaganis
,
F.
,
Adamos
,
D. A.
, and
Laskaris
,
N.
,
2016
, “A Consumer BCI for Automated Music Evaluation Within a Popular On-Demand Music Streaming Service “Taking Listener's Brainwaves to Extremes”,”
Artificial Intelligence Applications and Innovations. AIAI 2016. IFIP Advances in Information and Communication Technology
,
L.
Iliadis
, and
I.
Maglogiannis
, eds., Springer, Cham.,
475
, pp.
429
440
.
38.
Hernández
,
D.
,
Trujillo
,
L.
,
Z-Flores
,
E.
,
Villanueva
,
O.
, and
Romo-Fewell
,
O.
,
2018
, “Detecting Epilepsy in EEG Signals Using Time, Frequency and Time-Frequency Domain Features,”
Computer Science and Engineering Theory and Applications
,
Springer
,
New York
, pp.
167
182
.
39.
García-Martínez
,
B.
,
Martínez-Rodrigo
,
A.
,
Zangróniz Cantabrana
,
R.
,
Pastor Garcia
,
J. M.
, and
Alcaraz
,
R.
,
2016
, “
Application of Entropy-Based Metrics to Identify Emotional Distress From Electroencephalographic Recordings
,”
Entropy
,
18
(
6
), p.
221
.
40.
Jing
,
X.
,
Ellen
,
M.
,
Yuyin
,
F.
,
Mangano
,
F.
,
Hansel
,
G.
, and
Jeffrey
,
T.
,
2020
, “
Kurtosis and Skewness of High Frequency Brain Signals Are Altered in Pediatric Epilepsy
,”
Brain Commun.
,
2
(
1
).
41.
Frederick
,
J. A.
, and
Lubar
,
J. F.
,
2002
,
Skewness in the Time Series of EEG Magnitude and Spectral Correlation
, Society for Neuronal Regulation.
42.
Sanei
,
S.
, and
Chambers
,
J. A.
,
2013
,
EEG Signal Processing
,
John Wiley & Sons
,
West Sussex, England
.
43.
Hjorth
,
B.
,
1970
, “
EEG Analysis Based on Time Domain Properties
,”
Electroencephalogr. Clin. Neurophysiol.
,
29
(
3
), pp.
306
310
.
44.
Vidaurre
,
C.
,
KrMer
,
N.
,
Blankertz
,
B.
, and
Alois
,
S.
,
2009
, “
Time Domain Parameters as a Feature for EEG-Based Brain-Computer Interfaces
,”
Neural Networks
,
22
(
9
), pp.
1313
1319
.
45.
Kaboli
,
M.
,
Armando
,
D. L. R. T.
,
Walker
,
R.
, and
Cheng
,
G.
,
2015
, “
In-Hand Object Recognition via Texture Properties With Robotic Hands, Artificial Skin, and Novel Tactile Descriptors
,”
IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids)
,
Seoul, South Korea
,
Nov. 3–5
, pp.
1155
1160
.
46.
Thammasan
,
N.
,
Fukui
,
K. I.
, and
Numao
,
M.
,
2016
, “
Application of Deep Belief Networks in EEG-Based Dynamic Music-Emotion Recognition
,”
International Joint Conference on Neural Networks (IJCNN)
, pp.
881
888
.
47.
Ackermann
,
P.
,
Kohlschein
,
C.
,
Bitsch
,
J. A.
,
Wehrle
,
K.
, and
Jeschke
,
S.
,
2016
, “
EEG-Based Automatic Emotion Recognition: Feature Extraction, Selection and Classification Methods
,”
IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom)
, pp.
1
6
.
48.
Jenke
,
R.
,
Peer
,
A.
, and
Buss
,
M.
,
2014
, “
Feature Extraction and Selection for Emotion Recognition From EEG
,”
IEEE Trans. Affect. Comput.
,
5
(
3
), pp.
327
339
.
49.
Liu
,
Z.
,
Li
,
X.
,
Dua
,
S.
,
Chen
,
W.
,
Shao
,
J.
, and
Zheng
,
Q.
,
2021
, “
Strategy and Implementing Techniques for the Sound Quality Target of Car Interior Noise During Acceleration
,”
Appl. Acoust.
,
182
(
8
), p. 108171.
50.
Myslobodsky
,
M. S.
,
Coppola
,
R.
,
Bar-Ziv
,
J.
, and
Weinberger
,
D.
,
1990
, “
Adequacy of the International 10–20 Electrode System for Computed Neurophysiologic Topography
,”
J. Clin. Neurophysiol.
,
7
(
4
), pp.
507
518
.
51.
Zheng
,
W. L.
, and
Lu
,
B. L.
,
2015
, “
Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks
,”
IEEE Trans. Auton. Mental Dev.
,
7
(
3
), pp.
162
175
.
52.
Zheng
,
W. L.
,
Zhu
,
J. Y.
, and
Lu
,
B. L.
,
2019
, “
Identifying Stable Patterns Over Time for Emotion Recognition From EEG
,”
IEEE Trans. Affect. Comput.
,
10
(
3
), pp.
417
429
.
53.
Huang
,
G.
,
Hu
,
Z.
,
Zhang
,
L.
,
Li
,
L.
,
Liang
,
Z.
, and
Zhang
,
Z.
,
2020
, “
Removal of Eye-Blinking Artifacts by ICA in Cross-Modal Long-Term EEG Recording
,”
42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
,
Montreal, QC, Canada
,
July 20–24
, pp.
217
220
.
54.
Nie
,
D.
,
Wang
,
X. W.
,
Shi
,
L. C.
, and
Lu
,
B.
,
2011
, “
EEG-based Emotion Recognition During Watching Movies
,”
5th International IEEE/EMBS Conference on Neural Engineering
,
Cancun, Mexico
,
Apr. 27–May 1
, pp.
667
670
.
55.
Biermayer
,
W.
,
Thomann
,
S.
, and
Brandl
,
F.
,
2001
, “
A Software Tool for Noise Quality and Brand Sound Development
,” SAE Technical Paper, SAE International, Detroit.
56.
Shin
,
S.
,
Ih
,
J.
,
Takeo
,
H.
, and
Shigeko
,
H.
,
2009
, “
Sound Quality Evaluation of the Booming Sensation for Passenger Cars
,”
Appl. Acoust.
,
70
(
2
), pp.
309
320
.
57.
Lee
,
S.
,
Park
,
D.
,
Kim
,
S.
, and
Lee
,
S.
,
2017
, “
A Novel Method for Objective Evaluation of Interior Sound in a Passenger Carand Its Application to the Design of Interior Sound in a Luxury Passenger Car
,” SAE Technical Paper 2017-01-1758, SAE International.
58.
Kim
,
S.
,
Chang
,
K.
,
Park
,
D.
, and
Lee
,
S.
,
2017
, “
A Systematic Approach to Engine Sound Design for Enhancing Sound Character by Active Sound Design
,”
SAE
Technical Paper, Detroit.
59.
Liyuan
,
Z.
, and
Hong
,
W.
,
2017
, “
A Research on the Evaluation of Interior Noise Based on EEG Technique
,”
Automot. Eng.
,
39
(
12
), pp.
78
83
.
60.
Hongwei
,
L.
,
Haifeng
,
L.
, and
Ma
,
L.
,
2018
, “
Brain's Cognitive Law of Changes in Musical Attributes While Listening to Music—An EEG Study
,”
J. Fudan Univ. (Natural Science)
,
57
(
3
), pp.
285
292
.
You do not currently have access to this content.