Abstract

Most of the approaches of feature extraction for data-driven rotating machinery fault diagnosis assume characteristics of periodicity and seasonality typically inherent to linear signals obtained from different sensors. Nevertheless, the behavior of rotating machinery is not necessarily linear when a failure occurs. Thus, new techniques based on the theory of chaos and nonlinear systems are needed to extract proper features of signals. This article introduces the use of features extracted from the Poincaré plot (PP), which are computed over vibration and current signals measured on a gearbox powered by an induction motor. A comparison between the performance of classic statistical features and PP features is developed by applying feature analysis based on analysis of varaince (ANOVA) and cluster validity assessment to rank and select the subset of best features. K-nearest-neighbor (KNN) algorithm is used to test the performance of the selected feature set for fault severity classification. The use of PP for the analysis of nonlinear, nonperiodic signals is not new; however, its application in mechanical systems is not widely extended. Our contribution aims at highlighting the use of the PP features, supported by data collected from a test bed under real conditions of speed and load, to proof the potential application of this approach. The results show that PP features extracted from the current signal yields 96% of classification accuracy when using at least 11 features.

References

1.
Cerrada
,
M.
,
Sánchez
,
R.-V.
,
Li
,
C.
,
Pacheco
,
F.
,
Cabrera
,
D.
,
de Oliveira
,
J. V.
, and
Vásquez
,
R. E.
,
2018
, “
A Review on Data-Driven Fault Severity Assessment in Rolling Bearings
,”
Mech. Syst. Signal Process.
,
99
(
5
), pp.
169
196
.
2.
Liu
,
R.
,
Yang
,
B.
,
Zio
,
E.
, and
Chen
,
X.
,
2018
, “
Artificial Intelligence for Fault Diagnosis of Rotating Machinery: A Review
,”
Mech. Syst. Signal Process.
,
108
(
7
), pp.
33
47
.
3.
Seevers
,
J.-P.
,
Jurczyk
,
K.
,
Meschede
,
H.
,
Hesselbach
,
J.
, and
Sutherland
,
J. W.
,
2020
, “
Automatic Detection of Manufacturing Equipment Cycles Using Time Series
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
3
), p.
031005
.
4.
Cerrada
,
M.
,
Sánchez
,
R.-V.
,
Pacheco
,
F.
,
Cabrera
,
D.
,
Zurita
,
G.
, and
Li
,
C.
,
2016
, “
Hierarchical Feature Selection Based on Relative Dependency for Gear Fault Diagnosis
,”
Appl. Intell.
,
44
(
3
), pp.
687
703
.
5.
Cerrada
,
M.
,
Sánchez
,
R. V.
,
Cabrera
,
D.
,
Zurita
,
G.
, and
Li
,
C.
,
2015
, “
Multi-Stage Feature Selection by Using Genetic Algorithms for Fault Diagnosis in Gearboxes Based on Vibration Signal
,”
Sensors
,
15
(
9
), pp.
23903
23926
.
6.
Lin
,
M.
,
Shan
,
M.
,
Zhou
,
J.
, and
Pan
,
Y.
,
2022
, “
A Data-Driven Fault Diagnosis Method Using Modified Health Index and Deep Neural Networks of a Rolling Bearing
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
2
), p.
021005
.
7.
Shao
,
H.
,
Jiang
,
H.
,
Zhao
,
H.
, and
Wang
,
F.
,
2017
, “
A Novel Deep Autoencoder Feature Learning Method for Rotating Machinery Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
95
(
8
), pp.
187
204
.
8.
Zhao
,
R.
,
Yan
,
R.
,
Chen
,
Z.
,
Mao
,
K.
,
Wang
,
P.
, and
Gao
,
R. X.
,
2019
, “
Deep Learning and Its Applications to Machine Health Monitoring
,”
Mech. Syst. Signal Process.
,
115
(
1
), pp.
213
237
.
9.
Cabrera
,
D.
,
Sancho
,
F.
,
Li
,
C.
,
Cerrada
,
M.
,
Sánchez
,
R.-V.
,
Pacheco
,
F.
, and
de Oliveira
,
J. V.
,
2017
, “
Automatic Feature Extraction of Time-Series Applied to Fault Severity Assessment of Helical Gearbox in Stationary and Non-Stationary Speed Operation
,”
Appl. Soft. Comput.
,
58
, pp.
53
64
.
10.
Li
,
C.
,
Sanchez
,
R.-V.
,
Zurita
,
G.
,
Cerrada
,
M.
,
Cabrera
,
D.
, and
Vásquez
,
R. E.
,
2015
, “
Multimodal Deep Support Vector Classification With Homologous Features and Its Application to Gearbox Fault Diagnosis
,”
Neurocomputing
,
168
, pp.
119
127
.
11.
Li
,
C.
,
Sánchez
,
R.-V.
,
Zurita
,
G.
,
Cerrada
,
M.
, and
Cabrera
,
D.
,
2016
, “
Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning
,”
Sensors
,
16
(
6
), pp.
1
19
.
12.
Medina
,
R.
,
Alvarez
,
X.
,
Jadán
,
D.
,
Macancela
,
J.-C.
,
Sánchez
,
R.-V.
, and
Cerrada
,
M.
,
2018
, “
Gearbox Fault Classification Using Dictionary Sparse Based Representations of Vibration Signals
,”
J. Intell. Fuzzy Syst.
,
34
(
6
), pp.
3605
3618
.
13.
Sánchez
,
R.-V.
,
Lucero
,
P.
,
Vásquez
,
R.
,
Cerrada
,
M.
,
Jean-Carlos
,
M.
, and
Cabrera
,
D.
,
2018
, “
Feature Ranking for Multi-Fault Diagnosis of Rotating Machinery by Using Random Forest and Knn
,”
J. Intell. Fuzzy Syst.
,
34
(
6
), pp.
3463
3473
.
14.
Peña
,
M.
,
Cerrada
,
M.
,
Alvarez
,
X.
,
Jadán
,
D.
,
Lucero
,
P.
,
Milton
,
B.
,
Guamán
,
R.
, and
Sánchez
,
R.-V.
,
2018
, “
Feature Engineering Based on Anova, Cluster Validity Assessment and Knn for Fault Diagnosis in Bearings
,”
J. Intell. Fuzzy Syst.
,
34
(
6
), pp.
3451
3462
.
15.
Pacheco
,
F.
,
Cerrada
,
M.
,
Sánchez
,
R.-V.
,
Cabrera
,
D.
,
Li
,
C.
, and
de Oliveira
,
J. V.
,
2017
, “
Attribute Clustering Using Rough Set Theory for Feature Selection in Fault Severity Classification of Rotating Machinery
,”
Expert Syst. Appl.
,
71
, pp.
69
86
.
16.
Lei
,
Y.
,
Lin
,
J.
,
Zuo
,
M. J.
, and
He
,
Z.
,
2014
, “
Condition Monitoring and Fault Diagnosis of Planetary Gearboxes: A Review
,”
Measurement
,
48
, pp.
292
305
.
17.
Chang-Jian
,
C.-W.
,
2010
, “
Strong Nonlinearity Analysis for Gear-Bearing System Under Nonlinear Suspension–Bifurcation and Chaos
,”
Nonlinear Anal. Real World Appl.
,
11
(
3
), pp.
1760
1774
.
18.
Cui
,
L.
, and
Cai
,
C.
,
2015
, “
Nonlinear Dynamics Analysis of a Gear-Shaft-Bearing System With Breathing Crack and Tooth Wear Faults
,”
Open Mech. Eng. J.
,
9
(
1
), pp.
483
491
.
19.
Pandya
,
D. H.
,
Upadhyay
,
S. H.
, and
Harsha
,
S. P.
,
2014
, “
Nonlinear Dynamic Analysis of High Speed Bearings Due to Combined Localized Defects
,”
J. Vib. Control
,
20
(
15
), pp.
2300
2313
.
20.
Jáuregui
,
J. C.
,
2011
, “Phase Diagram Analysis for Predicting Nonlinearities and Transient Response,”
Recent Advances in Vibrations Analysis
,
N.
Baddour
, ed.,
IntechOpen
,
Rijeka
, pp.
20
46
.
21.
Trendafilova
,
I.
, and
Manoach
,
E.
,
2012
, “Vibration-Based Methods for Structural and Machinery Fault Diagnosis Based on Nonlinear Dynamics Tools,”
Fault Diagnosis in Robotic and Industrial Systems
,
G.
Rigatos
, ed.,
IConcept Press Ltd.
,
Hong Kong
, pp.
1
24
.
22.
Brennan
,
M.
,
Palaniswami
,
M.
, and
Kamen
,
P.
,
2001
, “
Do Existing Measures of Poincare Plot Geometry Reflect Nonlinear Features of Heart Rate Variability?
,”
IEEE Trans. Biomed. Eng.
,
48
(
11
), pp.
1342
1347
.
23.
Piskorski
,
J.
, and
Guzik
,
P.
,
2007
, “
Geometry of the Poincaré Plot of rr Intervals and Its Asymmetry in Healthy Adults
,”
Physiol. Meas.
,
28
(
3
), p.
287
.
24.
Sharif
,
B.
, and
Jafari
,
A. H.
,
2018
, “
Design of an Optimum Poincaré Plane for Extracting Meaningful Samples From EEG Signals
,”
Australas. Phys. Eng. Sci. Med.
,
41
(
1
), pp.
13
20
.
25.
Chen
,
G.
,
2009
, “
Study on Nonlinear Dynamic Response of an Unbalanced Rotor Supported on Ball Bearing
,”
ASME J. Vib. Acoust.
,
131
(
6
), p.
061001
.
26.
Patra
,
P.
,
Saran
,
V. H.
, and
Harsha
,
S.
,
2018
, “
Non-Linear Dynamic Response Analysis of Cylindrical Roller Bearings Due to Rotational Speed
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
233
(
2
), pp.
379
390
.
27.
Patel
,
U. A.
, and
Naik
,
B. S.
,
2017
, “
Nonlinear Vibration Prediction of Cylindrical Roller Bearing Rotor System Modeling for Localized Defect at Inner Race With Finite Element Approach
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
231
(
4
), pp.
647
657
.
28.
Singru
,
P.
,
Krishnakumar
,
V.
,
Natarajan
,
D.
, and
Raizada
,
A.
,
2018
, “
Bearing Failure Prediction Using Wigner-Ville Distribution, Modified Poincare Mapping and Fast Fourier Transform
,”
J. Vibroeng.
,
20
(
1
), pp.
127
137
.
29.
Wang
,
J.
,
Li
,
R.
, and
Peng
,
X.
,
2003
, “
Survey of Nonlinear Vibration of Gear Transmission Systems
,”
Appl. Mech. Rev.
,
56
(
3
), pp.
309
329
.
30.
Kahraman
,
A.
, and
Blankenship
,
G. W.
,
1997
, “
Experiments on Nonlinear Dynamic Behavior of an Oscillator With Clearance and Periodically Time-Varying Parameters
,”
ASME J. Appl. Mech.
,
64
(
1
), pp.
217
226
.
31.
Szumiski
,
P.
, and
Kapitaniak
,
T.
,
2012
, “
Nonlinear Control and Chaotic Vibrations of Perturbed Trajectories of Manipulators
,”
Annu. Rev. Chaos Theory Bifurcations Dyn. Syst.
,
2
, pp.
32
54
.
32.
Shen
,
F.
,
Langari
,
R.
, and
Yan
,
R.
,
2020
, “
Exploring Sample/Feature Hybrid Transfer for Gear Fault Diagnosis Under Varying Working Conditions
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
4
), p.
041009
.
33.
Cerrada
,
M.
,
Sánchez
,
R.
, and
Cabrera
,
D.
,
2018
, “
A Semi-Supervised Approach Based on Evolving Clusters for Discovering Unknown Abnormal Condition Patterns in Gearboxes
,”
J. Intell. Fuzzy Syst.
,
34
(
6
), pp.
3581
3593
.
34.
Medina
,
R.
,
Alvarez
,
X.
,
Jadán
,
D.
,
Cerrada
,
M.
,
Sánchez
,
R.-V.
, and
Macancela
,
J. C.
,
2017
, “
Poincaré Plot Features From Vibration Signal for Gearbox Fault Diagnosis
,”
IEEE Second Ecuador Technical Chapters Meeting (ETCM)
,
Salinas, Ecuador
,
Oct. 16–20
, IEEE, pp.
1
6
.
35.
Medina
,
R.
,
Macancela
,
Jean Carlo Lucero
,
Sánchez
,
R.-V.
, and
Cerrada
,
M.
,
2020
, “
Gear and Bearing Fault Classification Under Different Load and Speed by Using Poincaré Plot Features and Svm
,”
J. Intell. Manuf.
,
33
, pp.
1031
1055
.
36.
Cerrada
,
M.
,
Li
,
C.
,
Snchez
,
R.-V.
,
Pacheco
,
F.
,
Cabrera
,
D.
, and
Valente de Oliveira
,
J.
,
2018
, “
A Fuzzy Transition Based Approach for Fault Severity Prediction in Helical Gearboxes
,”
Fuzzy Sets Syst.
,
337
(
C
), pp.
52
73
.
37.
Monteiro
,
R. P.
,
Bastos-Filho
,
C. J. A.
,
Cerrada
,
M.
,
Cabrera
,
D.
, and
Sánchez
,
R. V.
,
2018
, “
Convolutional Neural Networks Using Fourier Transform Spectrogram to Classify the Severity of Gear Tooth Breakage
,”
2018 International Conference on Sensing,Diagnostics, Prognostics, and Control (SDPC)
,
Xi'an, China
,
Aug. 15–17
, pp.
1
9
.
38.
Koichubekov
,
B.
,
Riklefs
,
V.
,
Sorokina
,
M.
,
Korshukov
,
I.
,
Turgunova
,
L.
,
Laryushina
,
Y.
,
Bakirova
,
R.
,
Muldaeva
,
G.
,
Bekov
,
E.
, and
Kultenova
,
M.
,
2017
, “
Informative Nature and Nonlinearity of Lagged Poincaré Plots Indices in Analysis of Heart Rate Variability
,”
Entropy
,
19
(
10
), p.
523
.
39.
Von Oertzen
,
T.
, and
Boker
,
S. M.
,
2010
, “
Time Delay Embedding Increases Estimation Precision of Models of Intraindividual Variability
,”
Psychometrika
,
75
(
1
), pp.
158
175
.
40.
Eckmann
,
J.-P.
,
Kamphorst
,
S. O.
, and
Ruelle
,
D.
,
1987
, “
Recurrence Plots of Dynamical Systems
,”
Europhys. Lett.
,
4
(
9
), p.
973
.
41.
Takens
,
F.
,
1981
, “Detecting Strange Attractors in Turbulence,”
Dynamical Systems and Turbulence, Warwick 1980
,
D.
Rand
and
L.-S.
Young
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
366
381
.
42.
Fraser
,
A. M.
, and
Swinney
,
H. L.
,
1986
, “
Independent Coordinates for Strange Attractors From Mutual Information
,”
Phys. Rev. A
,
33
(
2
), pp.
1134
1140
.
43.
Barber
,
C. B.
,
Dobkin
,
D. P.
, and
Huhdanpaa
,
H.
,
1996
, “
The Quickhull Algorithm for Convex Hulls
,”
ACM Trans. Math. Soft. (TOMS)
,
22
(
4
), pp.
469
483
.
44.
Maaten
,
L. v. d.
, and
Hinton
,
G.
,
2008
, “
Visualizing Data Using T-sne
,”
J. Mach. Learn. Res.
,
9
(11), pp.
2579
2605
.
45.
Peña
,
M.
,
Lanzarini
,
L.
,
Cerrada
,
M.
,
Cabrera
,
D.
, and
Sánchez
,
R.-V.
,
2021
, “
Data-Driven Gearbox Fault Severity Diagnosis Based on Concept Drift
,”
IEEE Fifth Ecuador Technical Chapters Meeting (ETCM)
,
Ecuador
,
Oct. 12–15
, IEEE, pp.
1
6
.
You do not currently have access to this content.