Abstract

Automatic license plate recognition (ALPR) system has been widely used in intelligent transportation and other fields. However, in complex environments such as vehicle sound source localization, poor illumination, or bad weather conditions, ALPR is still a challenging problem. Aiming at the problem, an end-to-end deep learning framework is developed based on depthwise over-parameterized convolution recurrent neural network for license plate character recognition. The proposed framework is composed as follows: (i) license plate correcting module based on spatial transformation network; (ii) feature extraction module based on depthwise over-parameterized convolution; (iii) sequence annotation module based on bidirectional long short-term memory; and (iv) regularized sequence decoding module based on connectionist temporal classification with maximum conditional entropy. Two open-source datasets of Chinese License Plate Datasets (SYSU) and Chinese City Parking Dataset (CCPD) are used to verify the performance of the algorithm. The proposed end-to-end framework can effectively rectify distorted and inclined license plates in spatial domain. It can recognize license plates without complex character segmentation process. Compared with some current state-of-art algorithms, the proposed algorithm achieved the best performance with the recognition accuracy of 96.31% and 88.31% based on the two datasets of SYSU and CCPD, respectively.

References

1.
Shashirangana
,
J.
,
Padmasiri
,
H.
,
Meedeniya
,
D.
, and
Perera
,
C.
,
2020
, “
Automated License Plate Recognition: a Survey on Methods and Techniques
,”
IEEE Access
,
9
, pp.
11203
11225
.
2.
Zhao
,
Y.
,
Yu
,
Z.
,
Li
,
X.
, and
Cai
,
M.
,
2019
, “
Chinese License Plate Image Database Building Methodology for License Plate Recognition
,”
J. Electron. Imag.
,
28
(
1
), p.
013001
.
3.
Vaiyapuri
,
T.
,
Mohanty
,
S.
,
Sivaram
,
M.
,
Pustokhina
,
I.
,
Pustokhin
,
D.
, and
Shankar
,
K.
,
2021
, “
Automatic Vehicle License Plate Recognition Using Optimal Deep Learning Model
,”
Comput., Mater. Continua
,
67
(
2
), pp.
1881
1897
.
4.
Puranic
,
A.
,
Deepak
,
K.
, and
Umadevi
,
V.
,
2016
, “
Vehicle Number Plate Recognition System: a Literature Review and Implementation Using Template Matching
,”
Int. J. Comput. Appl.
,
134
(
1
), pp.
12
16
.
5.
Chang
,
S.
,
Chen
,
L.
,
Chung
,
Y.
, and
Chen
,
S.
,
2004
, “
Automatic License Plate Recognition
,”
IEEE Trans. Intell. Transpor. Syst.
,
5
(
1
), pp.
42
53
.
6.
Liew
,
X.
, and
Jong
,
S.
,
2020
, “
Vehicle Plate Number Recognition Algorithm for Vehicle Finder System
,”
Evol. Electr. Electron. Eng.
,
1
(
1
), pp.
210
218
.
7.
Liu
,
Y.
,
Huang
,
H.
,
Cao
,
J.
, and
Huang
,
T.
,
2018
, “
Convolutional Neural Networks-Based Intelligent Recognition of Chinese License Plates
,”
Soft Comput.
,
22
(
7
), pp.
2403
2419
.
8.
Ahn
,
H.
, and
Cho
,
H.
,
2021
, “
Research of Automatic Recognition of Car License Plates Based on Deep Learning for Convergence Traffic Control System
,”
Personal Ubiquitous Comput.
, pp.
1
10
.
9.
Laroca
,
R.
,
Zanlorensi
,
L.
,
Gonçalves
,
G.
,
Todt
,
E.
,
Schwartz
,
W.
, and
Menotti
,
D.
,
2021
, “
An Efficient and Layout-Independent Automatic License Plate Recognition System Based on the YOLO Detector
,”
IET Intell. Transp. Syst.
,
15
(
4
), pp.
483
503
.
10.
Chen
,
S.
,
Liu
,
Q.
,
Ma
,
J.
, and
Yang
,
C.
,
2021
, “
Scale-Invariant Multidirectional License Plate Detection With the Network Combining Indirect and Direct Branches
,”
Sensors
,
21
(
4
), p.
1074
.
11.
Xiao
,
D.
,
Zhang
,
L.
,
Li
,
J.
, and
Li
,
J.
,
2021
, “
Robust License Plate Detection and Recognition With Automatic Rectification
,”
J. Electron. Imag.
,
30
(
1
), p.
013002
.
12.
Huang
,
Q.
,
Cai
,
Z.
, and
Lan
,
T.
,
2021
, “
A Single Neural Network for Mixed Style License Plate Detection and Recognition
,”
IEEE Access
,
9
, pp.
21777
21785
.
13.
Li
,
H.
,
Wang
,
P.
,
You
,
M.
, and
Shen
,
C.
,
2018
, “
Reading Car License Plates Using Deep Convolutional Neural Networks
,”
Image Vision Comput.
,
72
, pp.
14
23
.
14.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
.
15.
Graves
,
A.
,
Fernández
,
S.
,
Gomez
,
F.
, and
Schmidhuber
,
J.
,
2006
, “
Connectionist Temporal Classification: Labelling Unsegmented Sequence Data With Recurrent Neural Networks
,”
Proceedings of the 23rd International Conference on Machine Learning
,
New York
,
June 25–29
, pp.
369
376
.
16.
Wang
,
J.
,
Huang
,
H.
,
Qian
,
X.
,
Cao
,
J.
, and
Dai
,
Y.
,
2018
, “
Sequence Recognition of Chinese License Plates
,”
Neurocomputing
,
317
, pp.
149
158
.
17.
Wang
,
W.
,
Yang
,
J.
,
Chen
,
M.
, and
Wang
,
P.
,
2019
, “
A Light CNN for End-to-End Car License Plates Detection and Recognition
,”
IEEE Access
,
7
, p.
173875
.
18.
Shi
,
B.
,
Bai
,
X.
, and
Yao
,
C.
,
2016
, “
An End-to-End Trainable Neural Network for Image-Based Sequence Recognition and Its Application to Scene Text Recognition
,”
IEEE. Trans. Pattern. Anal. Mach. Intell.
,
39
(
11
), pp.
2298
2304
.
19.
Boulila
,
W.
,
Sellami
,
M.
,
Driss
,
M.
,
Al-Sarem
,
M.
,
Safaei
,
M.
, and
Ghaleb
,
F.
,
2021
, “
Rs-dcnn: A Novel Distributed Convolutional-Neural-Networks Based-Approach for Big Remote-Sensing Image Classification
,”
Comput. Electron. Agric.
,
182
, p.
106014
.
20.
Taghanaki
,
S. A.
,
Abhishek
,
K.
,
Cohen
,
J.
,
Cohen-Adad
,
J.
, and
Hamarneh
,
G.
,
2021
, “
Deep Semantic Segmentation of Natural and Medical Images: a Review
,”
Artif. Intell. Rev.
,
54
(
1
), pp.
137
178
.
21.
Zhang
,
S.
,
Tang
,
G.
,
Liu
,
Y.
, and
Mao
,
H.
,
2019
, “
Robust License Plate Recognition With Shared Adversarial Training Network
,”
IEEE Access
,
8
, pp.
697
705
.
22.
He
,
M.
, and
Hao
,
P.
,
2020
, “
Robust Automatic Recognition of Chinese License Plates in Natural Scenes
,”
IEEE Access
,
8
, p.
173804
.
23.
Zou
,
Y.
,
Zhang
,
Y.
,
Yan
,
J.
,
Jiang
,
X.
,
Huang
,
T.
,
Fan
,
H.
, and
Cui
,
Z.
,
2020
, “
A Robust License Plate Recognition Model Based on Bi-LSTM
,”
IEEE Access
,
8
, p.
211630
.
24.
Dai
,
J.
,
Qi
,
H.
,
Xiong
,
Y.
,
Li
,
Y.
,
Zhang
,
G.
,
Hu
,
H.
, and
Wei
,
Y.
,
2017
, “
Deformable Convolutional Networks
,”
Proceedings of the IEEE International Conference on Computer Vision
,
Venice, Italy
,
Oct. 22–29
, pp.
764
773
.
25.
Li
,
X.
,
Wang
,
W.
,
Hu
,
X.
, and
Yang
,
J.
,
2019
, “
Selective Kernel Networks
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
,
June 15–20
, pp.
510
519
.
26.
Chen
,
Y.
,
Fan
,
H.
,
Xu
,
B.
,
Yan
,
Z.
,
Kalantidis
,
Y.
,
Rohrbach
,
M.
,
Yan
,
S.
, and
Feng
,
J.
,
2019
, “
Drop An Octave: Reducing Spatial Redundancy in Convolutional Neural Networks With Octave Convolution
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
Seoul, South Korea
,
Oct. 27–28
, pp.
3435
3444
.
27.
Cao
,
J.
,
Li
,
Y.
,
Sun
,
M.
,
Chen
,
Y.
,
Lischinski
,
D.
,
Cohen-Or
,
D.
,
Chen
,
B.
, and
Tu
,
C.
,
2022
, “
Do-Conv: Depthwise Over-Parameterized Convolutional Layer
,”
IEEE Trans. Image Process.
, pp.
3726
3736
.
28.
Gao
,
H.
,
Chen
,
Z.
, and
Li
,
C.
,
2021
, “
Shallow Network Based on Depthwise Overparameterized Convolution for Hyperspectral Image Classification
,”
IEEE Geosci. Remote Sens. Lett.
,
19
(
1
), pp.
1
5
.
29.
Qu
,
Z.
,
Wang
,
C.
,
Wang
,
S.
, and
Ju
,
F.
,
2022
, “
A Method of Hierarchical Feature Fusion and Connected Attention Architecture for Pavement Crack Detection
,”
IEEE Trans. Intell. Transp. Sys.
, pp.
1
10
.
30.
Wang
,
H.
,
Wang
,
Z.
,
Wang
,
J.
,
Li
,
K.
,
Geng
,
G.
,
Kang
,
F.
, and
Cao
,
X.
,
2022
, “
Ica-unet: An Improved U-net Network for Brown Adipose Tissue Segmentation
,”
J. Innovative Opt. Health Sci.
,
15
(
3
), p.
2250018
.
31.
Jaderberg
,
M.
,
Simonyan
,
K.
, and
Zisserman
,
A.
,
2015
, “
Spatial Transformer Networks
,”
Adv. Neural Inf. Process. Syst.
,
28
, pp.
2017
2025
.
32.
Zhan
,
F.
,
Zhu
,
H.
, and
Lu
,
S.
,
2019
, “
Spatial Fusion Gan for Image Synthesis
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
,
June 15–20
, pp.
3653
3662
.
33.
Shi
,
B.
,
Wang
,
X.
,
Lyu
,
P.
,
Yao
,
C.
, and
Bai
,
X.
,
2016
, “
Robust Scene Text Recognition With Automatic Rectification
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 27–30
, pp.
4168
4176
.
34.
Palmer
,
G.
,
Green
,
M.
,
Boyland
,
E.
,
Vasconcelos
,
Y.
,
Savani
,
R.
, and
Singleton
,
A.
,
2021
, “
A Deep Learning Approach to Identify Unhealthy Advertisements in Street View Images
,”
Sci. Rep.
,
11
(
1
), pp.
1
12
.
35.
Chen
,
J.
,
Li
,
Y.
,
Du
,
Y.
, and
Frey
,
E.
,
2020
, “
Generating Anthropomorphic Phantoms Using Fully Unsupervised Deformable Image Registration With Convolutional Neural Networks
,”
Med. Phys.
,
47
(
12
), pp.
6366
6380
.
36.
Ye
,
X.
,
Hong
,
D.
,
Chen
,
H.
,
Hsiao
,
P.
, and
Fu
,
L.
,
2020
, “
A Two-Stage Real-Time YOLOV2-Based Road Marking Detector With Lightweight Spatial Transformation-Invariant Classification
,”
Image Vision Comput.
,
102
, p.
103978
.
37.
Wu
,
Y.
,
Lu
,
X.
, and
Qin
,
C.
,
2020
, “
Towards End-to-End Face Recognition Method Through Spatial Transformer
,”
5th Annual International Conference on Information System and Artificial Intelligence
,
Zhejiang, China
,
May 22–23
, Vol.
1575
,
IOP Publishing
, p.
012090
.
38.
Sarkar
,
P.
,
Mishra
,
D.
, and
Subhramanyam
,
G.
,
2019
, “Automatic Attendance System Using Deep Learning Framework,”
Machine Intelligence and Signal Analysis
,
M.
Tanveer
, and
R.
Bilas Pachori
, eds.,
Springer
,
Indore, India
, pp.
335
346
.
39.
Sharma
,
S.
,
Shivhare
,
S.
,
Singh
,
N.
, and
Kumar
,
K.
,
2019
, “Computationally Efficient ANN Model for Small-Scale Problems,”
Machine Intelligence and Signal Analysis
,
M.
Tanveer
, and
R.
Bilas Pachori
, eds.,
Springer
,
Indore, India
, pp.
423
435
.
40.
Cîrstea
,
B.
, and
Likforman-Sulem
,
L.
,
2016
, “
Tied Spatial Transformer Networks for Digit Recognition
,”
2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)
,
Shenzhen, China
,
Oct. 23–26
,
IEEE
, pp.
524
529
.
41.
Shi
,
B.
,
Yang
,
M.
,
Wang
,
X.
,
Lyu
,
P.
,
Yao
,
C.
, and
Bai
,
X.
,
2018
, “
Aster: An Attentional Scene Text Recognizer With Flexible Rectification
,”
IEEE. Trans. Pattern. Anal. Mach. Intell.
,
41
(
9
), pp.
2035
2048
.
42.
Keller
,
W.
, and
Borkowski
,
A.
,
2019
, “
Thin Plate Spline Interpolation
,”
J. Geodesy
,
93
(
9
), pp.
1251
1269
.
43.
Cao
,
D.
,
Zhong
,
Y.
,
Wang
,
L.
,
He
,
Y.
, and
Dang
,
J.
,
2020
, “
Scene Text Detection in Natural Images: A Review
,”
Symmetry
,
12
(
12
), p.
1956
.
44.
Stephen
,
G.
,
2013
, “
Recurrent Neural Networks
,”
Scholarpedia
,
8
(
2
), p.
1888
.
45.
Bookstein
,
F.
,
1989
, “
Principal Warps: Thin-Plate Splines and the Decomposition of Deformations
,”
IEEE. Trans. Pattern. Anal. Mach. Intell.
,
11
(
6
), pp.
567
585
.
46.
Liu
,
H.
,
Jin
,
S.
, and
Zhang
,
C.
,
2018
, “
Connectionist Temporal Classification With Maximum Entropy Regularization
,”
Adv. Neural Inf. Process. Syst.
,
31
, pp.
839
849
.
47.
Xu
,
Z.
,
Yang
,
W.
,
Meng
,
A.
,
Lu
,
N.
,
Huang
,
H.
,
Ying
,
C.
, and
Huang
,
L.
,
2018
, “
Towards End-to-End License Plate Detection and Recognition: A Large Dataset and Baseline
,”
Proceedings of the European Conference on Computer Vision (ECCV)
,
Munich, Germany
,
Sept. 8–14
, pp.
255
271
.
48.
Luo
,
C.
,
Zhu
,
Y.
,
Jin
,
L.
, and
Wang
,
Y.
,
2020
, “
Learn to Augment: Joint Data Augmentation and Network Optimization for Text Recognition
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Seattle, WA
,
June 13–19
, pp.
13746
13755
.
49.
Luo
,
C.
,
Jin
,
L.
, and
Sun
,
Z.
,
2019
, “
Moran: A Multi-object Rectified Attention Network for Scene Text Recognition
,”
Pattern Recogn.
,
90
, pp.
109
118
.
50.
Zherzdev
,
S.
, and
Gruzdev
,
A.
,
2018
,
“LPRNet: License Plate Recognition Via Deep Neural Networks
,”
arXiv preprint
https://arxiv.org/abs/1806.10447
You do not currently have access to this content.