Abstract

Riveting and bolting are common assembly methods in aircraft production. The fasteners are installed immediately after hole drilling and fix the relative tangential displacements of the parts that took place. A proper fastener sequence installation is very important because a wrong one can lead to a “bubble-effect” when gap between parts after fastening becomes larger in some areas rather than being reduced. This circumstance affects the quality of the final assembly. For that reason, the efficient methods for determination of fastening sequence taking into account the specifics of the assembly process are needed. The problem is complicated by several aspects. First of all, it is a combinatorial problem with uncertain input data. Second, the assembly quality evaluation demands the time-consuming computations of the stress–strain state of the fastened parts caused by sequential installation of fasteners. Most commonly used strategies (heuristic methods and approximation algorithms) require a large number of computational iterations what dramatically complicates the problem. The paper presents the efficient methods of fastener sequence optimization based on greedy strategy and the specifics of the assembly process. Verification of the results by comparison to commonly used installation strategies shows its quality excellence.

References

1.
Liang
,
J.
,
2013
, “
The Formation and Effect of Interlayer Gap in Dry Drilling of Stacked Metal Materials
,”
Int. J. Adv. Manuf. Technol.
,
69
(
1–4
), pp.
1263
1272
.
2.
Blanchot
,
V.
, and
Daidie
,
A.
,
2006
, “
Riveted Assembly Modelling: Study and Numerical Characterisation of a Riveting Process
,”
J. Mater. Process. Technol.
,
180
(
1–3
), pp.
201
209
.
3.
Bedair
,
O. K.
, and
Eastaugh
,
G. F.
,
2007
, “
A Numerical Model for Analysis of Riveted Splice Joints Accounting for Secondary Bending and Plates/Rivet Interaction
,”
Thin-Walled Struct.
,
45
(
3
), pp.
251
258
.
4.
Hong
,
X.
,
Yuan
,
L.
,
Kaifu
,
Z.
,
Jianfeng
,
Y.
,
Zhenxing
,
L.
, and
Jianbin
,
S.
,
2010
, “
Multi-objective Optimization Method for Automatic Drilling and Riveting Sequence Planning
,”
Chin. J. Aeronaut.
,
23
(
6
), pp.
734
742
.
5.
Ni
,
J.
,
Tang
,
W. C.
,
Pan
,
M.
,
Qiu
,
X.
, and
Xing
,
Y.
,
2018
, “
Assembly Sequence Optimization for Minimizing the Riveting Path and Overall Dimensional Error
,”
Proc. Inst. Mech. Eng. B
,
232
(
14
), pp.
2605
2615
.
6.
Hasegawa
,
H.
,
Sasaki
,
H.
,
Uehara
,
H.
, and
Kawamo
,
K.
,
2007
, “
The Optimisation of Spot-Weld Positions for Vehicle Design by Using Hybrid Meta-Heuristics
,”
Int. J. Veh. Des.
,
43
(
1–4
), pp.
151
172
.
7.
Yan-Feng
,
X.
,
2009
, “
A Hybrid Algorithm for Optimizing Welding Points of Compliant Assemblies
,”
Assem. Autom.
,
29
(
2
), pp.
167
173
.
8.
Liao
,
Y. G.
,
2005
, “
Optimal Design of Weld Pattern in Sheet Metal Assembly Based on a Genetic Algorithm
,”
Int. J. Adv. Manuf. Technol.
,
26
(
5–6
), pp.
512
516
.
9.
Bhatti
,
Q. I.
,
Ouisse
,
M.
, and
Cogan
,
S.
,
2011
, “Robust Optimization and Quality Control in Spot Welded Structures,”
Linking Models and Experiments, Volume 2
,
T.
Proulx
, ed., Conference Proceedings of the Society for Experimental Mechanics Series, Springer, New York, pp.
297
309
.
10.
Sadeghi Tabar
,
R.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2020
, “
Rapid Sequence Optimization of Spot Welds for Improved Geometrical Quality Using a Novel Stepwise Algorithm
,”
Eng. Optim.
,
53
(
5
), pp.
867
884
.
11.
Aman
,
F.
,
Cheraghi
,
S. H.
,
Krishnan
,
K. K.
, and
Lankarani
,
H.
,
2013
, “
Study of the Impact of Riveting Sequence, Rivet Pitch, and Gap Between Sheets on the Quality of Riveted Lap Joints Using Finite Element Method
,”
Int. J. Adv. Manuf. Technol.
,
67
(
1–4
), pp.
545
562
.
12.
Ni
,
J.
,
Tang
,
W.
,
Xing
,
Y.
,
Ben
,
K.
, and
Li
,
M.
,
2016
, “
A Local-to-Global Dimensional Error Calculation Framework for the Riveted Assembly Using Finite-Element Analysis
,”
ASME J. Manuf. Sci. Eng.
,
138
(
3
), p. 031004.
13.
Lupuleac
,
S.
,
Kovtun
,
M.
,
Rodionova
,
O.
, and
Marguet
,
B.
,
2010
, “
Assembly Simulation of Riveting Process
,”
SAE Int. J. Aerosp.
,
2
(
1
), pp.
193
198
.
14.
Lupuleac
,
S.
,
Petukhova
,
M.
,
Shinder
,
Y.
, and
Bretagnol
,
B.
,
2011
, “
Methodology for Solving Contact Problem During Riveting Process
,”
SAE Int. J. Aerosp.
,
4
(
2
), pp.
952
957
.
15.
Reeves
,
C. R.
,
1993
, “
Using Genetic Algorithms With Small Populations
,”
Proceedings of the 5th International Conference on Genetic Algorithms
,
San Francisco, CA
,
June 1
, pp.
92
97
.
16.
Carlson
,
J. S.
,
Spensieri
,
D.
,
Wärmefjord
,
K.
,
Segeborn
,
J.
, and
Söderberg
,
R.
,
2014
, “
Minimizing Dimensional Variation and Robot Traveling Time in Welding Stations
,”
Procedia CIRP
,
23
, pp.
77
82
.
17.
Wärmefjord
,
K.
,
Lindkvist
,
L.
, and
Söderberg
,
R.
,
2008
, “
Tolerance Simulation of Compliant Sheet Metal Assemblies Using Automatic Node-Based Contact Detection
,”
ASME 2008 International Mechanical Engineering Congress and Exposition
,
Boston, MA
,
Oct. 31–Nov. 6
,
ASME
, Vol.
14
, pp.
35
44
.
18.
Lupuleac
,
S.
,
Smirnov
,
A.
,
Shinder
,
J.
,
Petukhova
,
M.
,
Churilova
,
M.
,
Victorov
,
E.
, and
Bouriquet
,
J.
,
2020
, “
Complex Fastener Model for Simulation of Airframe Assembly Process
,”
Volume 2B: Advanced Manufacturing
, Virtual, Online,
Nov. 16–19
, Paper No. IMECE2020-23588.
19.
Lupuleac
,
S.
,
Pogarskaia
,
T.
,
Churilova
,
M.
,
Kokkolaras
,
M.
, and
Bonhomme
,
E.
,
2020
, “
Optimization of Fastener Pattern in Airframe Assembly
,”
Assem. Autom.
,
40
(
5
), pp.
723
733
.
20.
Pogarskaia
,
T.
,
Lupuleac
,
S.
, and
Bonhomme
,
E.
,
2020
, “
Novel Approach to Optimization of Fastener Pattern for Airframe Assembly Process
,”
Procedia CIRP
,
93
, pp.
1151
1157
.
21.
Lupuleac
,
S.
,
Zaitseva
,
N.
,
Stefanova
,
M.
,
Berezin
,
S.
,
Shinder
,
J.
,
Petukhova
,
M.
, and
Bonhomme
,
E.
,
2019
, “
Simulation of the Wing-to-Fuselage Assembly Process
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), p.
061009
.
22.
Zaitseva
,
N.
,
Lupuleac
,
S.
,
Khashba
,
V.
,
Shinder
,
J.
, and
Bonhomme
,
E.
,
2020
, “
Approaches to Initial Gap Modeling in Final Aircraft Assembly Simulation
,”
Volume 2B: Advanced Manufacturing
, Virtual, Online,
Nov. 16–19
, Paper No. IMECE2020-23528.
You do not currently have access to this content.