Abstract

To improve fault diagnosis accuracy, a data-driven fault diagnosis model based on the adjustment Mahalanobis–Taguchi system (AMTS) was proposed. This model can analyze and identify the characteristics of vibration signals by using degradation monitoring as the classifier to capture and recognize the faults of the product more accurately. To achieve this goal, we first used the modified ensemble empirical mode decomposition (MEEMD) scalar index to capture the bearing condition; then, by using the key intrinsic mode function (IMF) extracted by AMTS as the input of classifier, the optimized properties of bearing is decomposed and extracted effectively. Next, to improve the accuracy of the fault diagnosis, we tested different modes, employing the modified health index (MHI), which is designed to overcome the shortcomings of the proposed health index as a classifier in a single fault mode and the deep neural networks (DNNs) as a classifier in a multifault mode. To evaluate the effectiveness of our model, the Case Western Reserve University (CWRU) bearing data were used for verification. Results indicated a strong robustness with 99.16% and 1.09s, 99.86% and 6.61s fault diagnosis accuracy in different data modes. Furthermore, we argue that this data-driven fault diagnosis obviously lowers the maintenance cost of complex systems by significantly reducing the inspection frequency and improves future safety and reliability.

References

1.
Zhang
,
X.
,
Kang
,
J.
,
Hao
,
L.
,
Cai
,
L.
, and
Zhao
,
J.
,
2015
, “
Bearing Fault Diagnosis and Degradation Analysis Based on Improved Empirical Mode Decomposition and Maximum Correlated Kurtosis Deconvolution
,”
J. Vibroeng.
,
17
(
1
), pp.
243
260
.
2.
Koren
,
Y.
,
Hu
,
S.
,
Gu
,
P.
, and
Shpitalni
,
M.
,
2013
, “
Open-Architecture Products
,”
CIRP Ann.
,
62
(
2
), pp.
719
729
.
3.
Mobley
,
R. K.
,
2002
,
An Introduction to Predictive Maintenance
,
Elsevier
,
New York
.
4.
Djurdjanovic
,
D.
,
Lee
,
J.
, and
Ni
,
J.
,
2003
, “
Watchdog Agent—An Infotronics-Based Prognostics Approach for Product Performance Degradation Assessment and Prediction
,”
Adv. Eng. Inform.
,
17
(
3–4
), pp.
109
125
.
5.
Jin
,
G.
,
Matthews
,
D. E.
, and
Zhou
,
Z.
,
2013
, “
A Bayesian Framework for On-Line Degradation Assessment and Residual Life Prediction of Secondary Batteries Inspacecraft
,”
Reliab. Eng. Syst. Saf.
,
113
(
1
), pp.
7
20
.
6.
Xiongzi
,
C.
,
Jinsong
,
Y.
, and
Wengao
,
L.
,
2015
, “
System-Level Failure Prognostics Using Synthesized Health Index and Relevance Vector Machine
,”
Syst. Eng. Electron.
,
37
(
10
), pp.
2298
2305
.
7.
Hang
,
J.
,
Zhang
,
J.
,
Xia
,
M.
,
Ding
,
S.
, and
Hua
,
W.
,
2019
, “
Interturn Fault Diagnosis for Model-Predictive-Controlled-PMSM Based on Cost Function and Wavelet Transform
,”
IEEE Trans. Power Electron.
,
35
(
6
), pp.
6405
6418
.
8.
Li
,
W.
,
Jiao
,
Z.
, and
Zhou
,
L.
,
2019
, “
Analysis of Performance Degradation and Residual Life Prediction of Batteries for Electric Vehicles Under Driving Conditions
,”
IEEJ Trans. Electr. Electron. Eng.
,
14
(
3
), pp.
493
498
.
9.
Abdelkader
,
R.
,
Kaddour
,
A.
,
Bendiabdellah
,
A.
, and
Derouiche
,
Z.
,
2018
, “
Rolling Bearing Fault Diagnosis Based on an Improved Denoising Method Using the Complete Ensemble Empirical Mode Decomposition and the Optimized Thresholding Operation
,”
IEEE Sensors J.
,
18
(
17
), pp.
7166
7172
.
10.
Rai
,
A.
, and
Upadhyay
,
S.
,
2016
, “
A Review on Signal Processing Techniques Utilized in the Fault Diagnosis of Rolling Element Bearings
,”
Tribol. Int.
,
96
, pp.
289
306
.
11.
Wu
,
Z.
, and
Huang
,
N. E.
,
2009
, “
Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method
,”
Adv. Adapt. Data Analysis
,
1
(
1
), pp.
1
41
.
12.
Yeh
,
J.-R.
,
Shieh
,
J.-S.
, and
Huang
,
N. E.
,
2010
, “
Complementary Ensemble Empirical Mode Decomposition: A Novel Noise Enhanced Data Analysis Method
,”
Adv Adapt. Data Analysis
,
2
(
2
), pp.
135
156
.
13.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S. R.
,
Wu
,
M. C.
,
Shih
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N.-C.
,
Tung
,
C. C.
, and
Liu
,
H. H.
,
1998
, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. R. Soc. A
,
454
(
1971
), pp.
903
995
.
14.
Hong
,
W.
, and
Chen
,
T.-S.
,
2011
, “
A Novel Data Embedding Method Using Adaptive Pixel Pair Matching
,”
IEEE Trans. Inf. Forensics Secur.
,
7
(
1
), pp.
176
184
.
15.
Ma
,
B.
, and
Zhang
,
T.
,
2020
, “
Single-Channel Blind Source Separation for Vibration Signals Based on TVF-EMD and Improved SCA
,”
IET Signal Proc.
,
14
(
4
), pp.
259
268
.
16.
Yao
,
Y.
,
Sfarra
,
S.
,
Ibarra-Castanedo
,
C.
,
You
,
R.
, and
Maldague
,
X. P.
,
2017
, “
The Multi-Dimensional Ensemble Empirical Mode Decomposition (MEEMD)
,”
J. Therm. Anal. Calorim.
,
128
(
3
), pp.
1841
1858
.
17.
Yang
,
Z.
,
Kong
,
C.
,
Wang
,
Y.
,
Rong
,
X.
, and
Wei
,
L.
,
2021
, “
Fault Diagnosis of Mine Asynchronous Motor Based on MEEMD Energy Entropy and ANN
,”
Comput. Electr. Eng.
,
92
(
4
), p.
107070
.
18.
Yu
,
Y.
,
Li
,
W.
,
Sheng
,
D.
, and
Chen
,
J.
,
2015
, “
A Novel Sensor Fault Diagnosis Method Based on Modified Ensemble Empirical Mode Decomposition and Probabilistic Neural Network
,”
Measurement
,
68
, pp.
328
336
.
19.
Liu
,
F.
,
Gao
,
J.
, and
Liu
,
H.
,
2020
, “
A Fault Diagnosis Solution of Rolling Bearing Based on MEEMD and QPSO-LSSVM
,”
IEEE Access
,
8
, pp.
101476
101488
.
20.
Li
,
Z.
,
Jiang
,
W.
,
Zhang
,
S.
,
Sun
,
Y.
, and
Zhang
,
S.
,
2021
, “
A Hydraulic Pump Fault Diagnosis Method Based on the Modified Ensemble Empirical Mode Decomposition and Wavelet Kernel Extreme Learning Machine Methods
,”
Sensors
,
21
(
8
), p.
2599
.
21.
Abdi
,
H.
, and
Williams
,
L. J.
,
2010
, “
Principal Component Analysis
,”
Wiley Interdiscip. Rev. Comput. Stat.
,
2
(
4
), pp.
433
459
.
22.
Yin
,
S.
,
Ding
,
S. X.
,
Haghani
,
A.
,
Hao
,
H.
, and
Zhang
,
P.
,
2012
, “
A Comparison Study of Basic Data-Driven Fault Diagnosis and Process Monitoring Methods on the Benchmark Tennessee Eastman Process
,”
J. Process Control
,
22
(
9
), pp.
1567
1581
.
23.
Zhou
,
D.
,
Li
,
G.
, and
Qin
,
S. J.
,
2010
, “
Total Projection to Latent Structures for Process Monitoring
,”
AIChE J.
,
56
(
1
), pp.
168
178
.
24.
Jin
,
X.
, and
Chow
,
T. W.
,
2013
, “
Anomaly Detection of Cooling fan and Fault Classification of Induction Motor Using Mahalanobis–Taguchi System
,”
Expert Syst. Appl.
,
40
(
15
), pp.
5787
5795
.
25.
Jobi-Taiwo
,
A. A.
, and
Cudney
,
E. A.
,
2015
, “
Mahalanobis–Taguchi System for Multiclass Classification of Steel Plates Fault
,”
Int. J. Qual. Eng. Technol.
,
5
(
1
), pp.
25
39
.
26.
Chen
,
J.
,
Cheng
,
L.
,
Yu
,
H.
, and
Hu
,
S.
,
2018
, “
Rolling Bearing Fault Diagnosis and Health Assessment Using EEMD and the Adjustment Mahalanobis–Taguchi System
,”
Int. J. Syst. Sci.
,
49
(
1
), pp.
147
159
.
27.
Tse
,
P. W.
, and
Wang
,
D.
,
2017
, “
Enhancing the Abilities in Assessing Slurry Pumps’ Performance Degradation and Estimating Their Remaining Useful Lives by Using Captured Vibration Signals
,”
J. Vib. Control
,
23
(
12
), pp.
1925
1937
.
28.
Wang
,
Z.
,
Lu
,
C.
,
Wang
,
Z.
,
Liu
,
H.
, and
Fan
,
H.
,
2013
, “
Fault Diagnosis and Health Assessment for Bearings Using the Mahalanobis–Taguchi System Based on EMD-SVD
,”
Trans. Inst. Meas. Control
,
35
(
6
), pp.
798
807
.
29.
Jia
,
F.
,
Lei
,
Y.
,
Lu
,
N.
, and
Xing
,
S.
,
2018
, “
Deep Normalized Convolutional Neural Network for Imbalanced Fault Classification of Machinery and Its Understanding via Visualization
,”
Mech. Syst. Signal Process
,
110
, pp.
349
367
.
30.
Lin
,
H.
,
Zhu
,
L.
,
Mehrabankhomartash
,
M.
,
Saeedifard
,
M.
, and
Shu
,
Z.
,
2020
, “
A Simplified SVM-Based Fault-Tolerant Strategy for Cascaded H-Bridge Multilevel Converters
,”
IEEE Trans. Power Electron.
,
35
(
11
), pp.
11310
11315
.
31.
Jan
,
S. U.
,
Lee
,
Y.-D.
,
Shin
,
J.
, and
Koo
,
I.
,
2017
, “
Sensor Fault Classification Based on Support Vector Machine and Statistical Time-Domain Features
,”
IEEE Access
,
5
, pp.
8682
8690
.
32.
Dong
,
R.
,
Xu
,
J.
, and
Lin
,
B.
,
2017
, “
Roi-Based Study on Impact Factors of Distributed PV Projects by LSSVM-PSO
,”
Energy
,
124
, pp.
336
349
.
33.
Lee
,
S.-H.
, and
Yang
,
C.-S.
,
2018
, “
GPSO-ICA: Independent Component Analysis Based on Gravitational Particle Swarm Optimization for Blind Source Separation
,”
J. Intell. Fuzzy Syst.
,
35
(
2
), pp.
1943
1957
.
34.
Liu
,
X.
,
Zhang
,
X.
,
Luan
,
Z.
, and
Xu
,
X.
,
2019
, “
Rolling Bearing Fault Diagnosis Based on EEMD Sample Entropy and PNN
,”
J. Eng.
,
2019
(
23
), pp.
8696
8700
.
35.
Zhang
,
S.
,
Zhao
,
H.
,
Xu
,
J.
, and
Deng
,
W.
,
2019
, “
A Novel Fault Diagnosis Method Based on Improved Adaptive Variational Mode Decomposition, Energy Entropy, and Probabilistic Neural Network
,”
Trans. Can. Soc. Mech. Eng.
,
44
(
1
), pp.
121
132
.
36.
Chen
,
T.
, and
Guestrin
,
C.
,
2016
, “
Xgboost: A Scalable Tree Boosting System
,”
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
San Francisco, CA
,
Aug. 13
, pp.
785
794
.
37.
Patnaik
,
B.
,
Mishra
,
M.
,
Bansal
,
R. C.
, and
Jena
,
R. K.
,
2021
, “
MODWT-XGBoost Based Smart Energy Solution for Fault Detection and Classification in a Smart Microgrid
,”
Appl. Energy
,
285
, p.
116457
.
38.
Zhao
,
R.
,
Yan
,
R.
,
Chen
,
Z.
,
Mao
,
K.
,
Wang
,
P.
, and
Gao
,
R. X.
,
2019
, “
Deep Learning and Its Applications to Machine Health Monitoring
,”
Mech. Syst. Signal Process
,
115
, pp.
213
237
.
39.
Han
,
H.
,
Xu
,
L.
,
Cui
,
X.
, and
Fan
,
Y.
,
2021
, “
Novel Chiller Fault Diagnosis Using Deep Neural Network (DNN) With Simulated Annealing (SA)
,”
Int. J. Refrig.
,
121
, pp.
269
278
.
40.
Bandt
,
C.
, and
Pompe
,
B.
,
2002
, “
Permutation Entropy: A Natural Complexity Measure for Time Series
,”
Phys. Rev. Lett.
,
88
(
17
), p.
174102
.
41.
Hinton
,
G.
,
Deng
,
L.
,
Yu
,
D.
,
Dahl
,
G. E.
,
Mohamed
,
A.-R.
,
Jaitly
,
N.
,
Senior
,
A.
,
Vanhoucke
,
V.
,
Nguyen
,
P.
,
Sainath
,
T. N.
, and
Kingsbury
,
B.
,
2012
, “
Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups
,”
IEEE Signal Process. Mag.
,
29
(
6
), pp.
82
97
.
42.
Shrivastava
,
A.
, and
Wadhwani
,
S.
,
2013
, “
Development of Fault Detection System for Ball Bearing of Induction Motor Using Vibration Signal
,”
Int. J. Sci. Res.
,
2
(
5
), pp.
256
259
.
You do not currently have access to this content.