Skip Nav Destination
Issues
April 2014
ISSN 1555-1415
EISSN 1555-1423
In this Issue
Research Papers
Three-Dimensional Solid Brick Element Using Slopes in the Absolute Nodal Coordinate Formulation
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021001.
doi: https://doi.org/10.1115/1.4024910
Topics:
Bricks
,
Degrees of freedom
,
Pendulums
,
Shapes
,
Deflection
,
Equations of motion
,
Polynomials
,
Displacement
,
Simulation
,
Cantilever beams
Accounting for Nonlinearities in Open-Loop Protocols for Symmetry Fault Compensation
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021002.
doi: https://doi.org/10.1115/1.4025193
Topics:
Bifurcation
,
Excitation
,
Optimization
,
Steady state
,
Linear systems
,
Accounting
,
Frequency response
Hopf Instabilities in Free Piston Stirling Engines
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021003.
doi: https://doi.org/10.1115/1.4025123
Topics:
Engines
,
Pistons
,
Stirling engines
,
Pressure
,
Limit cycles
,
Damping
,
Bifurcation
Bifurcation and Chaotic Analysis of Aeroelastic Systems
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021004.
doi: https://doi.org/10.1115/1.4025124
Topics:
Bifurcation
,
Displacement
Optimal Control and Forward Dynamics of Human Periodic Motions Using Fourier Series for Muscle Excitation Patterns
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021005.
doi: https://doi.org/10.1115/1.4024911
Topics:
Excitation
,
Muscle
,
Dynamics (Mechanics)
,
Fourier series
,
Optimization
Energetic and Dynamic Analysis of Multifrequency Legged Robot Locomotion With an Elastically Suspended Load
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021006.
doi: https://doi.org/10.1115/1.4024778
Wiener–Askey and Wiener–Haar Expansions for the Analysis and Prediction of Limit Cycle Oscillations in Uncertain Nonlinear Dynamic Friction Systems
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021007.
doi: https://doi.org/10.1115/1.4024851
Topics:
Bifurcation
,
Chaos
,
Friction
,
Limit cycles
,
Modeling
,
Oscillations
,
Polynomials
,
Vibration
,
Sliding friction
,
Displacement
Vibration Analysis of Postbuckled Timoshenko Beams Using a Numerical Solution Methodology
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021008.
doi: https://doi.org/10.1115/1.4025473
Topics:
Boundary-value problems
,
Buckling
,
Free vibrations
,
Stress
,
Vibration
,
Vibration analysis
,
Mode shapes
,
Eigenvalues
Full State Hybrid Projective Synchronization and Parameters Identification for Uncertain Chaotic (Hyperchaotic) Complex Systems
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021009.
doi: https://doi.org/10.1115/1.4025475
Topics:
Complex systems
,
Control equipment
,
Errors
,
Signals
,
Synchronization
,
Theorems (Mathematics)
Synchronization of Slowly Rotating Nonidentically Driven Pendula
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021010.
doi: https://doi.org/10.1115/1.4025576
Topics:
Energy budget (Physics)
,
Synchronization
,
Pendulums
Toward Searching Possible Oscillatory Region in Order Space for Nonlinear Fractional-Order Systems
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021011.
doi: https://doi.org/10.1115/1.4025477
Topics:
Chaos
,
Computer simulation
,
Nonlinear systems
,
Oscillations
,
Theorems (Mathematics)
,
Circuits
Distributed Operational Space Formulation of Serial Manipulators
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021012.
doi: https://doi.org/10.1115/1.4025577
Topics:
Algorithms
Nonlinear System Modeling and Application Based on System Equilibrium Manifold and Expansion Model
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021013.
doi: https://doi.org/10.1115/1.4025478
Topics:
Design
,
Engines
,
Equilibrium (Physics)
,
Manifolds
,
Modeling
,
Nonlinear systems
,
Simulation
,
Surges
,
Errors
,
Signals
Control Constraint of Underactuated Aerospace Systems
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021014.
doi: https://doi.org/10.1115/1.4025629
Topics:
Actuators
,
Aircraft
,
Dynamics (Mechanics)
,
Feedforward control
,
Rotation
,
Trajectories (Physics)
,
Aerospace systems
,
Feedback
,
Manipulators
,
Wind
Operational Space Inertia for Closed-Chain Robotic Systems
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021015.
doi: https://doi.org/10.1115/1.4025893
Topics:
Chain
,
End effectors
,
Robotics
,
Topology
,
Inertia (Mechanics)
Neural Dynamics and Newton–Raphson Iteration for Nonlinear Optimization
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021016.
doi: https://doi.org/10.1115/1.4025748
Topics:
Optimization
Introducing and Analyzing a Novel Three-Degree-of-Freedom Spatial Tensegrity Mechanism
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021017.
doi: https://doi.org/10.1115/1.4025894
Topics:
Actuators
,
Gravity (Force)
,
Kinematics
,
Springs
,
Tensegrity mechanisms
,
Equilibrium (Physics)
Maximizing Sensitivity Vector Fields: A Parametric Study
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021018.
doi: https://doi.org/10.1115/1.4026366
Topics:
Attractors
,
Dynamic systems
,
Feedback
,
Control equipment
,
Splines
Application of a Homogeneous Balance Method to Exact Solutions of Nonlinear Fractional Evolution Equations
J. Comput. Nonlinear Dynam. April 2014, 9(2): 021019.
doi: https://doi.org/10.1115/1.4025770
Technical Brief
Stability and Hopf Bifurcation in a Three-Species Food Chain System With Harvesting and Two Delays
J. Comput. Nonlinear Dynam. April 2014, 9(2): 024501.
doi: https://doi.org/10.1115/1.4025670
Topics:
Bifurcation
,
Chain
,
Delays
,
Food products
,
Stability
,
Equilibrium (Physics)
Email alerts
RSS Feeds
Investigation of Nonlinear Dynamic Behaviors of Vertical Rotor System Supported by Aerostatic Bearings
J. Comput. Nonlinear Dynam (January 2025)
Electric Circuit Analogs of First-Order Dual-Phase-Lag Diffusion
J. Comput. Nonlinear Dynam
A Fast Chebyshev Collocation Method for Stability Analysis of a Robotic Machining System With Time Delay
J. Comput. Nonlinear Dynam (January 2025)