Skip Nav Destination
Issues
November 2015
ISSN 1555-1415
EISSN 1555-1423
In this Issue
Editorial
Editorial
J. Comput. Nonlinear Dynam. November 2015, 10(6): 060201.
doi: https://doi.org/10.1115/1.4031555
Research Papers
Aeroelastic Tailoring of Helicopter Blades
J. Comput. Nonlinear Dynam. November 2015, 10(6): 061001.
doi: https://doi.org/10.1115/1.4027717
Fractional Derivative Constitutive Models for Finite Deformation of Viscoelastic Materials
J. Comput. Nonlinear Dynam. November 2015, 10(6): 061002.
doi: https://doi.org/10.1115/1.4028438
Topics:
Constitutive equations
,
Deformation
,
Stress
,
Stress tensors
,
Tensors
,
Viscoelastic materials
Mixed-Coordinate ANCF Rectangular Plate Finite Element
J. Comput. Nonlinear Dynam. November 2015, 10(6): 061003.
doi: https://doi.org/10.1115/1.4028085
Topics:
B-splines
,
Degrees of freedom
,
Dimensions
,
Finite element analysis
,
Shapes
,
Equations of motion
,
Algebra
,
Algorithms
,
Pendulums
Experimental Validation of a Mechanistic Multibody Model of a Vertical Piano Action
J. Comput. Nonlinear Dynam. November 2015, 10(6): 061004.
doi: https://doi.org/10.1115/1.4028194
Topics:
Hammers
,
String
,
Displacement
,
Friction
,
Simulation
,
Springs
,
Wire
A Simple Absolute Nodal Coordinate Formulation for Thin Beams With Large Deformations and Large Rotations
J. Comput. Nonlinear Dynam. November 2015, 10(6): 061005.
doi: https://doi.org/10.1115/1.4028610
Topics:
Cantilever beams
,
Cross section (Physics)
,
Deformation
,
Rotation
,
Tensors
,
Dynamics (Mechanics)
,
Shapes
,
Mode shapes
,
Potential energy
,
Polynomials
Energy Storage and Loss in Fractional-Order Systems
J. Comput. Nonlinear Dynam. November 2015, 10(6): 061006.
doi: https://doi.org/10.1115/1.4029511
Topics:
Approximation
,
Energy storage
,
Impulse (Physics)
,
Laplace transforms
,
Resistors
,
Capacitors
,
Circuits
,
Dynamics (Mechanics)
,
Inductors
Continuous Galerkin Petrov Time Discretization Scheme for the Solutions of the Chen System
J. Comput. Nonlinear Dynam. November 2015, 10(6): 061007.
doi: https://doi.org/10.1115/1.4029714
Galerkin Approximations for Stability of Delay Differential Equations With Time Periodic Delays
J. Comput. Nonlinear Dynam. November 2015, 10(6): 061008.
doi: https://doi.org/10.1115/1.4028631
Topics:
Delay differential equations
,
Delays
,
Galerkin method
,
Stability
Accuracy and Computational Efficiency of Finite Element Models for Low Velocity Impact on Composite Structures Subject to Progressive Damage and Delamination
J. Comput. Nonlinear Dynam. November 2015, 10(6): 061009.
doi: https://doi.org/10.1115/1.4028504
Topics:
Composite materials
,
Damage
,
Delamination
,
Finite element model
Stability Analysis of Sliding–Grazing Phenomenon in Dry-Friction Oscillator Using Takagi–Sugeno Fuzzy Approach
J. Comput. Nonlinear Dynam. November 2015, 10(6): 061010.
doi: https://doi.org/10.1115/1.4029663
Topics:
Bifurcation
,
Dry friction
,
Manifolds
,
Stability
,
Structural stability
,
Dynamics (Mechanics)
,
Takagi–Sugeno fuzzy models
,
Switches
The Use of the Adjoint Method for Solving Typical Optimization Problems in Multibody Dynamics
J. Comput. Nonlinear Dynam. November 2015, 10(6): 061011.
doi: https://doi.org/10.1115/1.4028417
Novel Hyperchaotic System and Its Circuit Implementation
J. Comput. Nonlinear Dynam. November 2015, 10(6): 061012.
doi: https://doi.org/10.1115/1.4029227
Topics:
Attractors
,
Bifurcation
,
Circuit design
,
Circuits
,
Eigenvalues
,
Equilibrium (Physics)
,
Stability
,
Design
Fuzzy Speed Control of Networked Motion Control Systems
J. Comput. Nonlinear Dynam. November 2015, 10(6): 061013.
doi: https://doi.org/10.1115/1.4029903
Topics:
Control equipment
,
Delays
,
Electromagnetic induction
,
Engines
,
Motors
,
Stability
,
Design
,
Sensors
Nonlinear Dynamics of a Rotating Flexible Link
J. Comput. Nonlinear Dynam. November 2015, 10(6): 061014.
doi: https://doi.org/10.1115/1.4028929
Topics:
Chaos
,
Computer simulation
,
Deformation
,
Flow (Dynamics)
,
Nonlinear dynamics
,
Wind turbines
,
Blades
,
Stiffness
,
Vibration
,
Damping
A Deflated Assembly Free Approach to Large-Scale Implicit Structural Dynamics
J. Comput. Nonlinear Dynam. November 2015, 10(6): 061015.
doi: https://doi.org/10.1115/1.4029110
Solving Nonlinear Fractional Integro-Differential Equations of Volterra Type Using Novel Mathematical Matrices
J. Comput. Nonlinear Dynam. November 2015, 10(6): 061016.
doi: https://doi.org/10.1115/1.4029281
Topics:
Algebra
,
Algorithms
,
Errors
,
Polynomials
,
Wavelets
,
Approximation
,
Differential equations
,
Error functions
Bifurcation Transition and Nonlinear Response in a Fractional-Order System
J. Comput. Nonlinear Dynam. November 2015, 10(6): 061017.
doi: https://doi.org/10.1115/1.4029512
Topics:
Bifurcation
A Novel Lattice Model on a Gradient Road With the Consideration of Relative Current
J. Comput. Nonlinear Dynam. November 2015, 10(6): 061018.
doi: https://doi.org/10.1115/1.4029701
Topics:
Density
,
Flow (Dynamics)
,
Roads
,
Stability
,
Traffic
,
Waves
,
Korteweg-de Vries equation
,
Solitons
A New Generalized-Type of Synchronization for Discrete-Time Chaotic Dynamical Systems
J. Comput. Nonlinear Dynam. November 2015, 10(6): 061019.
doi: https://doi.org/10.1115/1.4030295
Topics:
Synchronization
,
Discrete time systems
,
Control equipment
Global Analysis of Gravity Gradient Satellite's Pitch Motion in an Elliptic Orbit
J. Comput. Nonlinear Dynam. November 2015, 10(6): 061020.
doi: https://doi.org/10.1115/1.4029621
Topics:
Bifurcation
,
Computation
,
Stability
,
Algorithms
,
Gravity (Force)
New Results to a Three-Dimensional Chaotic System With Two Different Kinds of Nonisolated Equilibria
J. Comput. Nonlinear Dynam. November 2015, 10(6): 061021.
doi: https://doi.org/10.1115/1.4030028
Topics:
Bifurcation
,
Computer simulation
,
Cycles
,
Dynamics (Mechanics)
,
Eigenvalues
,
Equilibrium (Physics)
,
Flow (Dynamics)
,
Stability
,
Attractors
,
Manifolds
Adaptive Control for Fractional-Order Micro-Electro-Mechanical Resonator With Nonsymmetric Dead-Zone Input
J. Comput. Nonlinear Dynam. November 2015, 10(6): 061022.
doi: https://doi.org/10.1115/1.4029604
Topics:
Adaptive control
,
Control equipment
,
Simulation
,
Stability
,
Design
,
Closed loop systems
Numerical Solution of High-Order Fractional Volterra Integro-Differential Equations by Variational Homotopy Perturbation Iteration Method
J. Comput. Nonlinear Dynam. November 2015, 10(6): 061023.
doi: https://doi.org/10.1115/1.4030062
Topics:
Algorithms
,
Computation
,
Computers
,
Electromagnetic weapons
,
Errors
,
Approximation
,
Boundary-value problems
Galerkin Approximations for Stability of Delay Differential Equations With Distributed Delays
J. Comput. Nonlinear Dynam. November 2015, 10(6): 061024.
doi: https://doi.org/10.1115/1.4030153
Topics:
Galerkin method
,
Stability
,
Delays
,
Delay differential equations
On a Numerical Approach to Solve Multi-Order Fractional Differential Equations With Initial/Boundary Conditions
J. Comput. Nonlinear Dynam. November 2015, 10(6): 061025.
doi: https://doi.org/10.1115/1.4029785
Topics:
Boundary-value problems
,
Differential equations
,
Polynomials
,
Errors
,
Algorithms
Traveling Wave Solutions to Riesz Time-Fractional Camassa–Holm Equation in Modeling for Shallow-Water Waves
J. Comput. Nonlinear Dynam. November 2015, 10(6): 061026.
doi: https://doi.org/10.1115/1.4029800
Topics:
Computer simulation
,
Modeling
,
Traveling waves
,
Water
,
Waves
,
Deformation
,
Differential equations
Technical Brief
Effect of Electromagnetic Actuation on Contact Loss in a Hertzian Contact Oscillator
J. Comput. Nonlinear Dynam. November 2015, 10(6): 064501.
doi: https://doi.org/10.1115/1.4028838
Topics:
Frequency response
,
Resonance
,
Stability
Computing Schemes for Longitudinal Train Dynamics: Sequential, Parallel and Hybrid
J. Comput. Nonlinear Dynam. November 2015, 10(6): 064502.
doi: https://doi.org/10.1115/1.4029716
Topics:
Dynamics (Mechanics)
,
Simulation
,
Stress
,
Trains
,
Algorithms
,
Dynamic light scattering
,
Computers
The Control and Synchronization of a Rotational Relativistic Chaotic System With Parameter Uncertainties and External Disturbance
J. Comput. Nonlinear Dynam. November 2015, 10(6): 064503.
doi: https://doi.org/10.1115/1.4029702
Topics:
Synchronization
,
Uncertainty
,
Control equipment
New Result on Finite-Time Stability of Fractional-Order Nonlinear Delayed Systems
J. Comput. Nonlinear Dynam. November 2015, 10(6): 064504.
doi: https://doi.org/10.1115/1.4029784
Book Review
Matrix Methods in the Design Analysis of Mechanisms and Multibody Systems
J. Comput. Nonlinear Dynam. November 2015, 10(6): 066501.
doi: https://doi.org/10.1115/1.4031421
Topics:
Design
,
Multibody systems
,
Kinematics
Email alerts
RSS Feeds
An Efficient Analysis of Amplitude and Phase Dynamics in Networked MEMS-Colpitts Oscillators
J. Comput. Nonlinear Dynam (January 2025)
A Comparative Analysis Among Dynamics Modeling Approaches for Space Manipulator Systems
J. Comput. Nonlinear Dynam (January 2025)
A Finite Difference-Based Adams-Type Approach for Numerical Solution of Nonlinear Fractional Differential Equations: A Fractional Lotka–Volterra Model as a Case Study
J. Comput. Nonlinear Dynam (January 2025)
Nonlinear Dynamic Analysis of Riemann–Liouville Fractional-Order Damping Giant Magnetostrictive Actuator
J. Comput. Nonlinear Dynam (January 2025)
A Fast Chebyshev Collocation Method for Stability Analysis of a Robotic Machining System with Time Delay
J. Comput. Nonlinear Dynam