In this paper, we consider model examples of dynamical systems with only a few degrees of freedom, and with desirable symmetry properties, and explore compensating control strategies for retaining robust symmetric system response even under symmetry-breaking defects. The analysis demonstrates the distinct differences between linear versions of these models, in which fault-compensating strategies are always found, and weakly nonlinear counterparts with varying degrees of asymmetry, for which a multitude of locally optimal solutions may coexist. We further formulate a candidate optimization protocol for fault compensation applied to self-healing systems, which respond to symmetry-breaking defects by a continuous process of fault correction. The analysis shows that such a protocol may exhibit discontinuous changes in the control strategy as the self-healing system successively regains its original symmetry properties. In addition, it is argued that upon return to a symmetric configuration, such a protocol may result in a different control strategy from that applied prior to the occurrence of a fault.

References

1.
Happawana
,
G.
,
Nwokah
,
O.
,
Bajaj
,
A.
, and
Azene
,
M.
,
1998
, “
Free and Forced Response of Mistuned Linear Cyclic Systems: A Singular Perturbation Approach
,”
J. Sound Vib.
,
211
(
5
), pp.
761
789
.10.1006/jsvi.1997.1349
2.
Samaranayake
,
S.
,
Samaranayake
,
G.
, and
Bajaj
,
A.
,
2000
, “
Resonant Vibrations in Harmonically Excited Weakly Coupled Mechanical Systems With Cyclic Symmetry
,”
Chaos, Solitons Fractals
,
11
(
10
), pp.
1519
1534
.10.1016/S0960-0779(99)00075-2
3.
Vakakis
,
A. F.
,
1992
, “
Dynamics of a Nonlinear Periodic Structure With Cyclic Symmetry
,”
Acta Mech.
,
95
(
1–4
), pp.
197
226
.10.1007/BF01170813
4.
Bianchi
,
N.
,
Bolognani
,
S.
, and
Pre
,
M. D.
,
2007
, “
Strategies for the Fault-Tolerant Current Control of a Five-Phase Permanent-Magnet Motor
,”
IEEE Trans. Ind. Appl.
,
43
(
4
), pp.
960
970
.10.1109/TIA.2007.900445
5.
Golubitsky
,
M.
,
Stewart
,
I.
,
Buono
,
P.
, and
Collins
,
J. J.
,
1999
, “
Symmetry in Locomotor Central Pattern Generators and Animal Gaits
,”
Nature
,
401
(
6754
), pp.
693
695
.10.1038/44416
6.
Pinto
,
C. M. A.
, and
Golubitsky
,
M.
,
2006
, “
Central Pattern Generators for Bipedal Locomotion
,”
J. Math. Biol.
,
53
(
3
), pp.
474
489
.10.1007/s00285-006-0021-2
7.
Archer
,
K. R.
,
Castillo
,
R. C.
,
MacKenzie
,
E. J.
,
Bosse
,
M. J.
, and
the Lower Extremity Assessment Project (LEAP) Study Group
,
2006
. “
Gait Symmetry and Walking Speed Analysis Following Lower-Extremity Trauma
,”
Phys. Ther.
,
86
(
12
), pp.
1630
1640
.10.2522/ptj.20060035
8.
Hsiao-Wecksler
,
E. T.
,
Polk
,
J. D.
,
Rosengren
,
K. S.
,
Sosnoff
,
J. J.
, and
Hong
,
S.
,
2010
, “
A Review of New Analytic Techniques for Quantifying Symmetry in Locomotion
,”
Symmetry
,
2
(
2
), pp.
1135
1155
.10.3390/sym2021135
9.
Noble
,
J. W.
, and
Prentice
,
S. D.
,
2005
, “
Adaptation to Unilateral Change in Lower Limb Mechanical Properties During Human Walking
,”
Exp. Brain Res.
,
169
, pp.
482
495
.10.1007/s00221-005-0162-3
10.
Bastian
,
A. J.
,
2008
, “
Understanding Sensorimotor Adaptation and Learning for Rehabilitation
,”
Curr. Opin. Neurol.
,
21
, pp.
628
633
.10.1097/WCO.0b013e328315a293
11.
Button
,
K.
,
van Deursen
,
R.
, and
Price
,
P.
,
2005
, “
Measurement of Functional Recovery in Individuals With Acute Anterior Cruciate Ligament Rupture
,”
Br. J. Sports Med.
,
39
(
11
), pp.
866
871
.10.1136/bjsm.2005.019984
12.
Hopper
,
D. M.
,
Strauss
,
G. R.
,
Boyle
,
J. J.
, and
Bell
,
J.
,
2008
, “
Functional Recovery After Anterior Cruciate Ligament Reconstruction: A Longitudinal Perspective
,”
Arch. Phys. Med. Rehabil.
,
89
(
8
), pp.
1535
1541
.10.1016/j.apmr.2007.11.057
13.
Lindstroem
,
M.
,
Fellaender-Tsai
,
L.
,
Wredmark
,
T.
, and
Henriksson
,
M.
,
2010
, “
Adaptations of Gait and Muscle Activation in Chronic ACL Deficiency
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
18
(
1
), pp.
106
114
.10.1007/s00167-009-0886-x
14.
Golubitsky
,
M.
,
Schaeffer
,
D. G.
, and
Stewart
,
I.
,
1988
,
Singularities and Groups in Bifurcation Theory
,
Springer-Verlag
,
New York
.
15.
Dankowicz
,
H.
, and
Schilder
,
F.
,
2011
, “
An Extended Continuation Problem for Bifurcation Analysis in the Presence of Constraints
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
3
), p.
031003
.10.1115/1.4002684
16.
Nayfeh
,
A. H.
,
2000
,
Perturbation Methods
,
Wiley
,
New York
.
17.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
Wiley
,
New York
.
You do not currently have access to this content.