The stability analysis of railroad vehicles using eigenvalue analysis can provide essential information about the stability of the motion, ride quality, or passengers’ comfort. The eigenvalue analysis follows three steps: calculation of steady motion, linearization of the equations of motion, and eigenvalue calculation. This paper deals with different numerical methods that can be used for the eigenvalue analysis of multibody models of railroad vehicles that can include deformable tracks. Depending on the degree of nonlinearity of the model and coordinate selection, different methodologies can be used. A direct eigenvalue analysis is used to analyze the vehicle dynamics from the differential-algebraic equations of motion written in terms of a set of constrained coordinates. As an alternative, the equations of motion can be obtained in terms of independent coordinates taking the form of ordinary differential equations. This procedure requires more computations, but the interpretation of the results is straightforward.

References

1.
True
,
H.
, 1999, “
On the Theory of Nonlinear Dynamics and Its Applications in Vehicle System Dynamics
,”
Veh. Syst. Dyn.
,
31
, pp.
393
421
.
2.
Knothe
,
K.
, and
Böhm
,
F.
, 1999, “
History of Stability of Railway and Road Vehicles
,”
Veh. Syst. Dyn.
,
31
, pp.
283
323
.
3.
Wickens
,
A. H.
, 1986, “
Non-linear Dynamics of Railway Vehicles
,”
Veh. Syst. Dyn.
,
15
(
5
), pp.
289
301
.
4.
True
,
H.
,
Hansen
,
T.
, and
Lundell
,
H.
, 2005, “
On the Quasi-stationary Curving Dynamics of a Railroad Truck
,”
Proceedings of the Joint Rail Conference
, Pueblo, Colorado, March 16–18.
5.
Zboinski
,
K.
, and
Dusza
,
M.
, 2006, “
Development of the Method and Analysis for Non-linear Lateral Stability of Railway Vehicles in a Curved Track
,”
Veh. Syst. Dyn.
,
44
, pp.
147
157
.
6.
Zboinski
,
K.
, 1998, “
Dynamical Investigation of Railway Vehicles on a Curved Track
,”
Eur. J. Mech. A/Solids
,
17
, pp.
1001
1020
.
7.
Polach
,
O.
, 2006. “
On Non-linear Methods of Bogie Stability Assessment Using Computer Simulations
,”
Proc. Inst. Mech. Eng., F: J. Rail Rapid Transit
,
220
, pp.
13
27
.
8.
Pombo
,
J.
, 2004, “
A Multibody Methodology for Railway Dynamics Applications
,” Ph.D. thesis, Universidade Técnica de Lisboa, Instituto Superior Técnico.
9.
Strogatz
,
S. H.
, 2000,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
,
Perseus
,
Cambridge, MA
.
10.
Franke
,
C.
, and
Führer
,
C.
, 2001, “
Collocation Methods for the Investigation of Periodic Motion of Constrained Multibody System
,”
Multibody Syst. Dyn.
,
5
, pp.
133
158
.
11.
Schupp
,
G.
, 2006, “
Bifurcation Analysis of Railway Vehicles
,”
Multibody Syst. Dyn.
,
15
, pp.
25
50
.
12.
McPhee
,
J. J.
, and
Anderson
,
R. J.
, 1996, “
A Model Reduction Procedure for the Dynamic Analysis of Rail Vehicles Subjected to Linear Creep Forces
,”
Veh. Syst. Dyn.
,
25
(
5
), pp.
349
367
.
13.
Valtorta
,
D.
,
Zaazaa
,
K. E.
,
A. A. S.
, and
Sany
,
J. R.
, 2001, “
A Study of the Lateral Stability of Railroad Vehicles Using a Nonlinear Constrained Formulation
,”
Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition
,
New York, NY
, Nov. 11–16.
14.
Zaazaa
,
K. E.
, 2003, “
Elastic Force Model for Wheel/Rail Contact in Multibody Railroad Vehicle Systems
,” Ph.D. thesis, University of Illinois at Chicago, Chicago, IL.
15.
Boocock
,
D.
, 1969, “
Steady-State Motion of Railway Vehicles on Curved Track
,”
J. Mech. Eng. Sci.
,
11
, pp.
556
566
.
16.
Newland
,
D. E.
, 1969, “
Steering a Flexible Railway Truck on Curved Track
,”
J. Eng. Ind.
,
91
, pp.
908
918
.
17.
De Pater
,
A.
, 1989, “
Optimal Design of Running Gears. Part 1. Theory
,”
Veh. Syst. Dyn.
,
18
, pp.
243
274
.
18.
Wickens
,
A. H.
, 2003,
Fundamentals of Rail Vehicle Dynamics: Guidance and Stability
,
Swets and Zeitlinger, B. V. Lisse
,
The Netherlands
.
19.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
20.
Wickens
,
A. H.
, 1976, “
Steering and Dynamic Stability of Railway Vehicles
,”
Veh. Syst. Dyn.
,
5
, pp.
15
46
.
21.
Shabana
,
A. A.
, 1998,
Dynamics of Multibody Systems
,
Cambridge University Press
,
New York
.
22.
García de Jalón
,
J.
, and
Bayo
,
E.
, 1993,
Kinematic and Dynamic Simulation of Multibody Systems—The Real-Time Challenge
,
Springer
,
New York
.
23.
Shabana
,
A. A.
,
Zaazaa
,
K. E.
, and
Sugiyama
,
H.
, 2008,
Railroad Vehicle Dynamics: A Computational Approach
,
Taylor and Francis (CRC)
,
Boca Raton, FL
.
24.
Wehage
,
R. A.
, and
Haug
,
E. J.
, 1982, “
Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems
,”
J. Mech. Des.
,
134
, pp.
247
255
.
25.
Seydel
,
R.
, 1994,
Practical Bifurcation and Stability Analysis
, 2nd ed.,
Springer
,
Berlin
.
26.
Escalona
,
J. L.
, and
Chamorro
,
R.
, 2008, “
Stability Analysis of Vehicles on Circular Motions Using Multibody Dynamics
,”
Nonlinear Dyn.
,
53
, pp.
237
250
.
27.
Géradin
,
M.
, and
Cardona
,
A.
, 2001,
Flexible Multibody Dynamics. A Finite Element Approach
,
Wiley
,
New York
.
28.
Masarati
,
P.
, 2009, “
Direct Eigenanalysis of Constrained System Dynamics
,”
Proc. Inst. Mech. Eng., Part K: J. Multibody Dyn.
,
223
(
4
), pp.
335
342
.
29.
Chamorro
,
R.
,
Escalona
,
J. L.
, and
González
,
M.
, 2011, “
An Approach for Modeling Long Flexible Bodies With Application to Railroad Dynamics
,”
Multibody Syst. Dyn.
,
26
, pp.
135
152
.
You do not currently have access to this content.