This paper studies the application of the Lie series to the problem of parameter identification in multibody systems. Symbolic computing is used to generate the equations of motion and the associated Lie series solutions automatically. The symbolic Lie series solutions are used to define a procedure for computing the sum of the squared Euclidean distances between the true generalized coordinates and those obtained from a simulation using approximate system parameters. This procedure is then used as an objective function in a numerical optimization routine to estimate the unknown parameters in a multibody system. The effectiveness of this technique is demonstrated by estimating the parameters of a structural system, a spatial slider-crank mechanism, and an eight-degree- of-freedom vehicle model.

1.
Haug
,
E. J.
, 1989,
Computer Aided Kinematics and Dynamics of Mechanical Systems—Volume I: Basic Methods
,
Allyn and Bacon
,
Boston
.
2.
McPhee
,
J.
, 2003, “
Virtual Prototyping of Multibody Systems With Linear Graph Theory and Symbolic Computing
,”
Virtual Nonlinear Multibody Systems
,
W.
Schiehlen
and
M.
Valášek
, eds.,
Kluwer Academic
,
Dordrecht
, pp.
37
56
.
3.
McPhee
,
J.
, 2005, “
Unified Modelling Theories for the Dynamics of Multidisciplinary Multibody Systems
,”
Advances in Computational Multibody Systems
,
J. A. C.
Ambrósio
, ed.,
Springer
,
Dordrecht
, pp.
125
154
.
4.
Serban
,
R.
, and
Freeman
,
J. S.
, 2001, “
Identification and Identifiability of Unknown Parameters in Multibody Dynamic Systems
,”
Multibody Syst. Dyn.
1384-5640,
5
(
4
), pp.
335
350
.
5.
Shome
,
S. S.
,
Beale
,
D. G.
, and
Wang
,
D.
, 1998, “
A General Method for Estimating Dynamic Parameters of Spatial Mechanisms
,”
Nonlinear Dyn.
0924-090X,
16
(
4
), pp.
349
368
.
6.
Ebrahimi
,
S.
, and
Kövecses
,
J.
, 2010, “
Sensitivity Analysis for Estimation of Inertial Parameters of Multibody Mechanical Systems
,”
Mech. Syst. Signal Process.
0888-3270,
24
(
1
), pp.
19
28
.
7.
Ebrahimi
,
S.
, and
Kövecses
,
J.
, 2010, “
Unit Homogenization for Estimation of Inertial Parameters of Multibody Mechanical Systems
,”
Mech. Mach. Theory
0094-114X,
45
(
3
), pp.
438
453
.
8.
Kövecses
,
J.
, and
Ebrahimi
,
S.
, 2009, “
Parameter Analysis and Normalization for the Dynamics and Design of Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
4
(
3
), p.
031008
.
9.
Chenut
,
X.
,
Fisette
,
P.
, and
Samin
,
J. -C.
, 2002, “
Recursive Formalism With a Minimal Dynamic Parameterization for the Identification and Simulation of Multibody Systems. Application to the Human Body
,”
Multibody Syst. Dyn.
1384-5640,
8
(
2
), pp.
117
140
.
10.
Gordon
,
T. J.
, and
Hopkins
,
R.
, 1997, “
Parametric Identification of Multibody Models for Crash Victim Simulation
,”
Multibody Syst. Dyn.
1384-5640,
1
(
1
), pp.
85
112
.
11.
Pilipchuk
,
V. N.
, and
Tan
,
C. A.
, 2005, “
Non-Linear System Identification Based on Lie Series Solutions
,”
Mech. Syst. Signal Process.
0888-3270,
19
(
1
), pp.
71
86
.
12.
Hanslmeier
,
A.
, and
Dvorak
,
R.
, 1984, “
Numerical Integration With Lie-Series
,”
Astron. Astrophys.
0004-6361,
132
(
1
), pp.
203
207
.
13.
Rao
,
S. S.
, 1984,
Optimization: Theory and Applications
, 2nd ed.,
Wiley Eastern
,
New Delhi
.
14.
Reklaitis
,
G. V.
,
Ravindran
,
A.
, and
Ragsdell
,
K. M.
, 1983,
Engineering Optimization: Methods and Applications
,
Wiley
,
New York
.
15.
Shi
,
P.
, and
McPhee
,
J.
, 2000, “
Dynamics of Flexible Multibody Systems Using Virtual Work and Linear Graph Theory
,”
Multibody Syst. Dyn.
1384-5640,
4
(
4
), pp.
355
381
.
16.
McPhee
,
J.
,
Shi
,
P.
, and
Piedbœuf
,
J. -C.
, 2002, “
Dynamics of Multibody Systems Using Virtual Work and Symbolic Programming
,”
Math. Comput. Model. Dyn. Syst.
,
8
(
2
), pp.
137
155
.
17.
Baumgarte
,
J.
, 1972, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
1
(
1
), pp.
1
16
.
18.
Gear
,
C. W.
, 2006, “
Towards Explicit Methods for Differential Algebraic Equations
,”
BIT Numerical Mathematics
,
46
(
3
), pp.
505
514
.
19.
Bouazara
,
M.
, and
Richard
,
M. J.
, 2001, “
An Optimization Method Designed to Improve 3-D Vehicle Comfort and Road Holding Capability Through the Use of Active and Semi-Active Suspensions
,”
Eur. J. Mech. A/Solids
0997-7538,
20
(
3
), pp.
509
520
.
20.
Gautier
,
M.
, and
Khalil
,
W.
, 1990, “
Direct Calculation of Minimum Set of Inertial Parameters of Serial Robots
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
(
3
), pp.
368
373
.
21.
Fisette
,
P.
,
Raucent
,
B.
, and
Samin
,
J. -C.
, 1996, “
Minimal Dynamic Characterization of Tree-Like Multibody Systems
,”
Nonlinear Dyn.
0924-090X,
9
(
1–2
), pp.
165
184
.
22.
Ghanekar
,
M.
,
Wang
,
D. W. L.
, and
Heppler
,
G. R.
, 1997, “
Scaling Laws for Linear Controllers of Flexible Link Manipulators Characterized by Nondimensional Groups
,”
IEEE Trans. Rob. Autom.
1042-296X,
13
(
1
), pp.
117
127
.
23.
Ghanekar
,
M.
,
Wang
,
D. W. L.
, and
Heppler
,
G. R.
, 1998, “
Scaling Laws for Nonlinear Controllers of Dynamically Equivalent Rigid-Link Manipulators
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
2633
2639
.
24.
Ioannou
,
P. A.
, and
Sun
,
J.
, 1996,
Robust Adaptive Control
,
Prentice-Hall
,
Englewood Cliffs
.
25.
Ljung
,
L.
, and
Söderström
,
T.
, 1983,
Theory and Practice of Recursive Identification
,
MIT
,
Cambridge, MA
.
26.
Swevers
,
J.
,
Ganseman
,
C.
,
Tukel
,
D. B.
,
de Schutter
,
J.
, and
Van Brussel
,
H.
, 1997, “
Optimal Robot Excitation and Identification
,”
IEEE Trans. Rob. Autom.
1042-296X,
13
(
5
), pp.
730
740
.
27.
Wenzel
,
T. A.
,
Burnham
,
K. J.
,
Blundell
,
M. V.
, and
Williams
,
R. A.
, 2006, “
Dual Extended Kalman Filter for Vehicle State and Parameter Estimation
,”
Veh. Syst. Dyn.
0042-3114,
44
(
2
), pp.
153
171
.
28.
Cuadrado
,
J.
,
Dopico
,
D.
,
Barreiro
,
A.
, and
Delgado
,
E.
, 2009, “
Real-Time State Observers Based on Multibody Models and the Extended Kalman Filter
,”
J. Mech. Sci. Technol.
1738-494X,
23
(
4
), pp.
894
900
.
29.
Pryce
,
J. D.
, 1998, “
Solving High-Index DAEs by Taylor Series
,”
Numer. Algorithms
1017-1398,
19
(
1–4
), pp.
195
211
.
30.
Nedialkov
,
N. S.
, and
Pryce
,
J. D.
, 2005, “
Solving Differential-Algebraic Equations by Taylor Series (I): Computing Taylor Coefficients
,”
BIT Numerical Mathematics
,
45
(
3
), pp.
561
591
.
You do not currently have access to this content.