In order to identify experimental chaotic vibration signals correctly, the measured data were analyzed by applying the methods of Poincaré section, return map, and phase space reconstruction. However, the nonlinear time series analysis based on phase space reconstruction is complex and time-consuming for large quantities of experimental signals. Besides, especially when the signal identification process should be completed online, the conventional method is unable to meet the requirements. The energy distribution features of signals in different frequency bands were extracted with the wavelet package analysis method, and the important characteristic vectors for chaos identification were provided. These methods were verified with numerical simulation first in this paper. Then, the nonlinear vibration system based on an air spring isolator was designed, which exhibits different responses with different parameters. In the experiment, the wavelet package technology and neural network were applied to identify the system behavior; results showed that the vibration system exhibited chaotic responses under special parameter ranges, and the parameter variation law was concluded, which is the foundation of linear spectra isolation for chaotic vibration control technology.

1.
Shuyong
,
L.
,
Xiang
,
Y.
, and
Shijian
,
Z.
, 2007, “
Study on the Application of Magnetorheological Damper in Chaotic Vibration Control
,”
Proceedings of IDETC/CIE 2007, ASME 2007 Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Las Vegas, NV, Sept. 4–7, pp.
1817
1822
.
2.
Liu
,
S. -Y.
,
Yu
,
X.
, and
Zhu
,
S. -J.
, 2008, “
Study on the Chaos Anti-Control Technology in Nonlinear Vibration Isolation System
,”
J. Sound Vib.
0022-460X,
310
, pp.
855
864
.
3.
Rongjun
,
J.
,
Shijian
,
Z.
, and
Lin
,
H.
, 2001, “
Prospect of Applying Controlling Chaotic Vibration in the Waterborne-Noise Confrontation
,”
18th Biennial Conference on Mechanical Vibration and Noise
, ASME, Pittsburgh, PA, pp.
2983
2985
.
4.
Wolf
,
A.
,
Swift
,
J. B.
, and
Swinney
,
H. L.
, 1985, “
Determining Lyapunov Exponents From a Time Series
,”
Physica D
0167-2789,
16
, pp.
285
317
.
5.
Sano
,
M.
, and
Sawada
,
Y.
, 1985, “
Measurement of the Lyapunov Spectrum From a Chaotic Time Series
,”
Phys. Rev. Lett.
0031-9007,
55
(
10
), pp.
1082
1085
.
6.
Kantz
,
H.
, 1994, “
A Robust Method to Estimate the Maximal Lyapunov Exponent of a Time Series
,”
Phys. Lett. A
0375-9601,
185
, pp.
77
87
.
7.
Rosentein
,
M. T.
,
Collins
,
J. J.
, and
De Luca
,
C. J.
, 1993, “
A Practical Method for Calculating Largest Lyapunov Exponents From Small Data Sets
,”
Physica D
0167-2789,
65
, pp.
117
134
.
8.
Abarbanel
,
H. D. I.
,
R.
Brown
,
J. J.
Sidorowich
, and
L. Sh.
Tsimring
, 1993, “
The Analysis of Observed Chaotic Data in Physical Systems
,”
Rev. Mod. Phys.
0034-6861,
65
(
4
), pp.
1331
1392
.
9.
Procaccia
,
G.
, 1984, “
Dimensions and Entropies of Strange Attractors From a Fluctuating Dynamics Approach
,”
Physica D
0167-2789,
13
, pp.
34
54
.
10.
Golestani
,
A.
,
Jahed Motlagh
,
M. R.
,
Ahmadian
,
K.
,
Omidvarnia
,
A. H.
, and
Mozayani
,
N.
, 2009, “
A New Criterion to Distinguish Stochastic and Deterministic Time Series With the Poincaré Section and Fractal Dimension
,”
Chaos
1054-1500,
19
(
1
), p.
013137
.
11.
Iommi
,
G.
, 2010, “
Multifractal Analysis of the Lyapunov Exponent for the Backward Continued Fraction Map
,”
Ergod. Theory Dyn. Syst.
0143-3857,
30
(
01
), pp.
211
232
.
12.
Aleksic
,
Z.
, 1991, “
Estimating the Embedding Dimension
,”
Physica D
0167-2789,
52
, pp.
362
368
.
13.
Swinney
,
F.
, 1986, “
Independent Coordinates From Mutual Information
,”
Phys. Rev. A
1050-2947,
33
, pp.
1134
1140
.
14.
Kennel
,
M. B.
, and
H. D. I.
Abarbanel
, 2002, “
False Neighbors and False Strands: A Reliable Minimum Embedding Dimension Algorithm
,”
Phys. Rev. E
1063-651X,
66
, p.
026209
.
15.
Kennel
,
M. B.
, and
Brown
,
R.
, 1992, “
Determining Embedding Dimension for Phase Space Reconstruction Using a Geometrical Construction
,”
Phys. Rev. A
1050-2947,
45
, pp.
3403
3411
.
16.
Mindlin
,
G. B.
, and
Gilmore
,
R.
, 1992, “
Topological Analysis and Synthesis of Chaotic Time Series
,”
Physica D
0167-2789,
58
, pp.
229
242
.
17.
Albano
,
M.
,
Passamante
,
A.
, and
Farrell
,
M. E.
, 1991, “
Using Higher-Order Correlations to Define an Embedding Window
,”
Physica D
0167-2789,
54
, pp.
85
97
.
18.
Kugiumtzis
,
D.
, 1996, “
State Space Reconstruction Parameters in the Analysis of Chaotic Time Series—The Role of the Time Window Length
,”
Physica D
0167-2789,
95
, pp.
13
28
.
19.
Gautama
,
T.
,
Mandic
,
D. P.
, and
Van Hulle
,
M. M.
, 2003, “
A Differential Entropy Based Method for Determining the Optimal Embedding Parameters of a Signal
,”
IEEE Trans. Speech Audio Process.
1063-6676,
6
, pp.
29
32
.
20.
Beirlant
,
J.
,
Dudewiz
,
E. J.
, and
Gyorfi
,
L.
, 1997, “
Nonparametric Entropy Estimation: An Overview
,”
International J. Mathematical and statistical Sciences (New York)
,
6
, pp.
17
39
.
21.
Tsonis
,
A. A.
, and
Elsner
,
J. B.
, 1988, “
The Weather Attractor Over Very Short Timescales
,”
Nature (London)
0028-0836,
333
, pp.
545
547
.
22.
Buzug
,
T.
, and
Pfister
,
G.
, 1992, “
Optimal Delay Time and Embedding Dimension for Delay-Time Coordinates by Analysis of the Global Static and Local Dynamical Behavior of Strange Attractors
,”
Phys. Rev. A
1050-2947,
45
(
10
), pp.
7073
7084
.
23.
Hilborn
,
R. C.
, and
Ding
,
M.
, 1996, “
Optimal Reconstruction Space for Estimating Correlation Dimension
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
6
(
2
), pp.
377
381
.
24.
Cao
,
L.
, 1997, “
Practical Method for Determining the Minimum Embedding Dimension of a Scalar Time Series
,”
Physica D
0167-2789,
110
, pp.
43
50
.
25.
Davies
,
M. E.
, 1997, “
Reconstructing Attractors From Filtered Time Series
,”
Physica D
0167-2789,
101
, pp.
195
206
.
26.
Read
,
P. L.
, 1993, “
Phase Portrait Reconstruction Using Multivariate Singular Systems Analysis
,”
Physica D
0167-2789,
69
, pp.
353
365
.
27.
Potapov
,
A.
, 1997, “
Distortions of Reconstruction for Chaotic Attractors
,”
Physica D
0167-2789,
101
, pp.
207
226
.
28.
Gibson
,
J. F.
,
Farmer
,
J. D.
, and
Casdagli
,
M.
, 1992, “
An Analytic Approach to Practical State Space Reconstruction
,”
Physica D
0167-2789,
57
, pp.
1
30
.
29.
Casdagli
,
M.
,
Eubank
,
S.
, and
Farmer
,
J. D.
, 1991, “
State Space Reconstruction in the Presence of Noise
,”
Physica D
0167-2789,
51
, pp.
52
98
.
30.
Zhang
,
Q.
, and
Benveniste
,
A.
, 1992, “
Wavelet Networks
,”
IEEE Trans. Neural Netw.
1045-9227,
3
(
6
), pp.
889
898
.
31.
Shuyong
,
L.
,
Xiang
,
Y.
, and
Shijian
,
Z.
, 2004, “
Study on Chaotic Parameter Range of Nonlinear Vibration Isolation System
,”
Progress in Safety Science and Technology, Vol. 4: Proceedings of the 2004 International Symposium on Safety Science and Technology
, Shanghai, China, Oct. 25–28, pp.
2064
2068
.
32.
Shuyong
,
L.
,
Xiang
,
Y.
, and
Shijian
,
Z.
, 2007, “
Study on Application of Neural Network in Chaotic Vibration Isolation System
,”
Proceedings of IDETC/CIE 2007, ASME 2007 Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Las Vegas, NV, Sept. 4–7, pp.
1335
1338
.
You do not currently have access to this content.