We study the chaotic behavior of the T system, a three dimensional autonomous nonlinear system introduced by Tigan (2005, “Analysis of a Dynamical System Derived From the Lorenz System,” Scientific Bulletin Politehnica University of Timisoara, Tomul, 50, pp. 61–72), which has potential application in secure communications. Here, we first recount the heteroclinic orbits of Tigan and Dumitru (2008, “Analysis of a 3D Chaotic System,” Chaos, Solitons Fractals, 36, pp. 1315–1319), and then we analytically construct homoclinic orbits describing the observed Smale horseshoe chaos. In the parameter regimes identified by this rigorous Shil’nikov analysis, the occurrence of interesting behaviors thus predicted in the T system is verified by the use of numerical diagnostics.

1.
Tigan
,
Gh.
, 2005, “
Analysis of a Dynamical System Derived From the Lorenz System
,”
Scientific Bulletin Politehnica University of Timisoara, Tomul
,
50
(
64
), pp.
61
72
.
2.
Tigan
,
G.
, 2004, “
Bifurcation and the Stability in a System Derived From the Lorenz System
,”
Proceedings of the Third International Colloquium on Mathematics in Engineering and Numerical Physics
, pp.
265
272
.
3.
Álvarez
,
G.
,
Li
,
S.
,
Montoya
,
F.
,
Pastor
,
G.
, and
Romera
,
M.
, 2005, “
Breaking Projective Chaos Synchronization Secure Communication Using Filtering and Generalized Synchronization
,”
Chaos, Solitons Fractals
0960-0779,
24
, pp.
775
783
.
4.
Pecora
,
L. M.
, and
Carroll
,
T. L.
, 1990, “
Synchronization in Chaotic Systems
,”
Phys. Rev. Lett.
0031-9007,
64
(
8
), pp.
821
824
.
5.
Pecora
,
L. M.
, and
Carroll
,
T. L.
, 1991, “
Driving Systems With Chaotic Signals
,”
Phys. Rev. A
1050-2947,
44
(
4
), pp.
2374
2383
.
6.
Sprott
,
J. C.
, 1994, “
Some Simple Chaotic Flows
,”
Phys. Rev. E
1063-651X,
50
(
2
), pp.
R647
R650
.
7.
Shil’nikov
,
L. P.
, 1965, “
A Case of the Existence of a Countable Number of Periodic Motions
,”
Sov. Math. Dokl.
0197-6788,
6
, pp.
163
166
.
8.
Shil’nikov
,
L. P.
, 1970, “
A Contribution of the Problem of the Structure of an Extended Neighborhood of Rough Equilibrium State of Saddle-Focus Type
,”
Math. USSR. Sb.
0025-5734,
10
, pp.
91
102
.
9.
Silva
,
C. P.
, 1993, “
Shil’nikov Theorem—A Tutorial
,”
IEEE Trans. Circuits Syst., I: Regul. Pap.
1549-8328,
40
, pp.
675
682
.
10.
Zheng
,
Z.
, and
Chen
,
G.
, 2006, “
Existence of Heteroclinic Orbits of the Shil’nikov Type in a 3D Quadratic Autonomous Chaotic System
,”
J. Math. Anal. Appl.
0022-247X,
315
, pp.
106
119
.
11.
Zhou
,
T. S.
,
Chen
,
G.
, and
Celikovsky
,
S.
, 2005, “
Shil’nikov Chaos in the Generalized Lorenz Canonical Form of Dynamics System
,”
Nonlinear Dyn.
0924-090X,
39
, pp.
319
334
.
12.
Sun
,
F. -Y.
, 2007, “
Shil’nikov Heteroclinic Orbits in a Chaotic System
,”
Int. J. Mod. Phys. B
0217-9792,
21
, pp.
4429
4436
.
13.
Wang
,
J.
,
Zhao
,
M.
,
Zhang
,
Y.
, and
Xiong
,
X.
, 2007, “
Shil’nikov-Type Orbits of Lorenz-Family Systems
,”
Physica A
0378-4371,
375
, pp.
438
446
.
14.
Wilczak
,
D.
, 2006, “
The Existence of Shil’nikov Homoclinic Orbits in the Michelson System: A Computer Assisted Proof
,”
Found Comput. Math.
1615-3375,
6
, pp.
495
535
.
15.
Lamb
,
J. S. W.
,
Teixeira
,
M. -A.
, and
Webster
,
K. N.
, 2005, “
Heteroclinic Bifurcations Near Hopf-Zero Bifurcation in Reversible Vector Fields in R3
,”
J. Differ. Equations
0022-0396,
219
, pp.
78
115
.
16.
Corbera
,
M.
,
Llibre
,
J.
, and
Teixeira
,
M. -A.
, 2009, “
Symmetric Periodic Orbits Near a Heteroclinic Loop in R3 Formed by Two Singular Points, a Semistable Periodic Orbit and Their Invariant Manifolds
,”
Physica D
0167-2789,
238
, pp.
699
705
.
17.
Krauskopf
,
B.
, and
Rieß
,
T.
, 2008, “
A Lin’s Method Approach to Finding and Continuing Heteroclinic Connections Involving Periodic Orbits
,”
Nonlinearity
0951-7715,
21
, pp.
1655
1690
.
18.
Wagenknecht
,
T.
, 2005, “
Two-Heteroclinic Orbits Emerging in the Reversible Homoclinic Pitchfork Bifurcation
,”
Nonlinearity
0951-7715,
18
, pp.
527
542
.
19.
Jiang
,
Y.
, and
Sun
,
J.
, 2007, “
Shil’nikov Homoclinic Orbits in a New Chaotic System
,”
Chaos, Solitons Fractals
0960-0779,
32
, pp.
150
159
.
20.
Wang
,
X.
, 2009, “
Shil’nikov Chaos and Hopf Bifurcation Analysis of Rucklidge System
,”
Chaos, Solitons Fractals
0960-0779,
42
, pp.
2208
2217
.
21.
Zhou
,
L.
,
Chen
,
Y.
, and
Chen
,
F.
, 2009, “
Stability and Chaos of a Damped Satellite Partially Filled With Liquid
,”
Acta Astronaut.
0094-5765,
65
, pp.
1628
1638
.
22.
Wang
,
J.
,
Chen
,
Z.
, and
Yuan
,
Z.
, 2009, “
Existence of a New Three-Dimensional Chaotic Attractor
,”
Chaos, Solitons Fractals
0960-0779,
42
, pp.
3053
3057
.
23.
Watada
,
K.
,
Tetsuro
,
E.
, and
Seishi
,
H.
, 1998, “
Shil’nikov Orbits in an Autonomous Third-Order Chaotic Phase-Locked Loop
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122,
45
, pp.
979
983
.
24.
Zhou
,
T.
,
Tang
,
Y.
, and
Chen
,
G.
, 2004, “
Chen’s Attractor Exists
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
9
, pp.
3167
3177
.
25.
Zhou
,
T.
, and
Chen
,
G.
, 2006, “
Classification of Chaos in 3-D Autonomous Quadratic Systems—I. Basic Framework and Methods
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
16
, pp.
2459
2479
.
26.
Tigan
,
G.
, and
Dumitru
,
O.
, 2008, “
Analysis of a 3D Chaotic System
,”
Chaos, Solitons Fractals
0960-0779,
36
, pp.
1315
1319
.
27.
Tigan
,
G.
, and
Constantinescu
,
D.
, 2009, “
Heteroclinic Orbits in the T and the Lü Systems
,”
Chaos, Solitons Fractals
0960-0779,
42
, pp.
20
23
.
28.
Jiang
,
B.
,
Han
,
X.
, and
Bi
,
Q.
, 2010, “
Hopf Bifurcation Analysis in the T System
,”
Nonlinear Anal.: Real World Appl.
1468-1218,
11
, pp.
522
527
.
29.
Van Gorder
,
R. A.
, and
Choudhury
,
S. R.
, “
Extended Hopf Bifurcation Analysis of the T System
,” unpublished.
30.
Van Gorder
,
R. A.
, and
Choudhury
,
S. R.
, “
Classification of Chaotic Regimes in the T System by Use of Competitive Modes
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274, accepted.
31.
Wu
,
Y.
,
Zhou
,
X.
,
Chen
,
J.
, and
Hui
,
B.
, 2009, “
Chaos Synchronization of a New 3D Chaotic System
,”
Chaos, Solitons Fractals
0960-0779,
42
, pp.
1812
1819
.
32.
Li
,
X. -F.
,
Chu
,
Y. -D.
,
Zhang
,
J. -G.
, and
Chang
,
Y. -X.
, 2009, “
Nonlinear Dynamics and Circuit Implementation for a New Lorenz-Like Attractor
,”
Chaos, Solitons Fractals
0960-0779,
41
, pp.
2360
2370
.
33.
Yong
,
C.
, and
Zhen-Ya
,
Y.
, 2008, “
Chaos Control in a New Three-Dimensional Chaotic T System
,”
Commun. Theor. Phys.
0253-6102,
49
, pp.
951
954
.
34.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
, 1995,
Applied Nonlinear Dynamics
,
Wiley
,
New York
.
35.
Choudhury
,
S. R.
, 1992, “
On Bifurcations and Chaos in Predator-Prey Models With Delay
,”
Chaos, Solitons Fractals
0960-0779,
2
, pp.
393
409
.
36.
Doedel
,
E. J.
, 1986, “
AUTO-Software for Continuation and Bifurcation Problems in ODEs
,” CALTECH Report.
37.
Doedel
,
E. J.
,
Keller
,
H. B.
, and
Kernevez
,
J. P.
, 1991, “
Numerical Analysis and Control of Bifurcation Problems I and II
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
1
, pp.
493
520
and 745–772.
You do not currently have access to this content.