Nonlinear vibrations of an elastic structure with two partially filled liquid tanks subjected to horizontal harmonic excitation are investigated. The natural frequencies of the structure and sloshing satisfy the tuning condition 1:1:1 when tuned liquid dampers are used. The equations of motion for the structure and the modal equations of motion for the first, second, and third sloshing modes are derived by using Galerkin’s method, taking into account the nonlinearity of the sloshing. Then, van der Pol’s method is employed to determine the frequency response curves. It is found in calculating the frequency response curves that pitchfork bifurcation can occur followed by “localization phenomenon” for a specific excitation frequency range. During this range, sloshing occurs at different amplitudes in the two tanks, even if the dimensions of both tanks are identical. Furthermore, Hopf bifurcation may occur followed by amplitude- and phase-modulated motions including chaotic vibrations. In addition, Lyapunov exponents are calculated to prove the occurrence of both amplitude-modulated motions and chaotic vibrations. Bifurcation sets are also calculated to show the influence of the system parameters on the frequency response. Experiments were conducted to confirm the validity of the theoretical results. It was found that the theoretical results were in good agreement with the experimental data.

1.
Hutton
,
R. E.
, 1963, “
An Investigation of Resonant, Nonlinear, Nonplanar Free Surface Oscillations of a Fluid
,”
NASA
Technical Report No. D-1870.
2.
Abramson
,
H. N.
, 1966, “
The Dynamic Behavior of Liquids in Moving Containers
,”
NASA
Report No. SP-106.
3.
Ibrahim
,
R. A.
,
Pilipchuk
,
V.
, and
Ikeda
,
T.
, 2001, “
Recent Advances in Liquid Sloshing Dynamics
,”
Appl. Mech. Rev.
0003-6900,
54
(
2
), pp.
133
199
.
4.
Ibrahim
,
R. A.
, 2005,
Liquid Sloshing Dynamics
,
Cambridge University Press
,
Cambridge, London
.
5.
Modi
,
V. J.
, and
Welt
,
F.
, 1987, “
Vibration Control Using Nutation Dampers
,”
Proceedings of the International Conference on Flow Induced Vibration
, pp.
369
376
.
6.
Hagiuda
,
H.
, 1989, “
Oscillation Control System Exploiting Fluid Force Generated by Water Sloshing
,”
Mitsui Zosen Technical Review
0026-6825,
137
, pp.
13
20
.
7.
Fujino
,
Y.
,
Pacheco
,
M.
,
Sun
,
L. -M.
,
Chaiseri
,
P.
, and
Isobe
,
M.
, 1989, “
Simulation of Nonlinear Wave in Rectangular Tuned Liquid Damper (TLD) and Its Verification
,”
Trans. Jpn. Soc. Civ. Eng.
0385-5406,
35-A
, pp.
561
-
574
.
8.
Kaneko
,
S.
, and
Yoshida
,
O.
, 1999, “
Modeling of Deepwater-Type Rectangular Tuned Liquid Damper With Submerged Nets
,”
ASME J. Pressure Vessel Technol.
0094-9930,
121
(
4
), pp.
413
422
.
9.
Ikeda
,
T.
, and
Nakagawa
,
N.
, 1997, “
Non-Linear Vibrations of a Structure Caused by Water Sloshing in a Rectangular Tank
,”
J. Sound Vib.
0022-460X,
201
(
1
), pp.
23
41
.
10.
Ikeda
,
T.
,
Hirayama
,
T.
, and
Nakagawa
,
N.
, 1998, “
Nonlinear Vibrations of a Structure Caused by Water Sloshing in a Cylindrical Tank
,”
JSME Int. J., Ser. C
1340-8062,
41
(
3
), pp.
639
651
.
11.
Ibrahim
,
R. A.
, and
Barr
,
A. D. S.
, 1975, “
Autoparametric Resonance in a Structure Containing a Liquid, Part I: Two Mode Interaction
,”
J. Sound Vib.
0022-460X,
42
(
2
), pp.
159
179
.
12.
Ibrahim
,
R. A.
, 1976, “
Multiple Internal Resonance in a Structure-Liquid System
,”
ASME J. Eng. Ind.
0022-0817,
98
(
3
), pp.
1092
1098
.
13.
Ibrahim
,
R. A.
,
Gau
,
J. S.
, and
Soundararajan
,
A.
, 1988, “
Parametric and Autoparametric Vibrations of an Elevated Water Tower, Part I: Non-Linear Parametric Resonance
,”
J. Sound Vib.
0022-460X,
121
(
3
), pp.
413
428
.
14.
Ikeda
,
T.
, 2003, “
Nonlinear Parametric Vibrations of an Elastic Structure With a Rectangular Liquid Tank
,”
Nonlinear Dyn.
0924-090X,
33
(
1
), pp.
43
70
.
15.
Ikeda
,
T.
, and
Murakami
,
S.
, 1999, “
Nonlinear Vibrations of an Elastic Structure Subjected to Vertical Excitation and Coupled With Sloshing in a Cylindrical Tank
,”
J. Sound Vib.
0022-460X,
185
(
3
), pp.
517
546
.
16.
Ikeda
,
T.
, and
Murakami
,
S.
, 2008, “
Nonlinear Vibrations of Elastic Structures Containing a Cylindrical Liquid Tank Under Vertical Excitation
,”
Journal of System Design and Dynamics
,
2
(
3
), pp.
822
836
.
17.
Xu
,
K.
, and
Igusa
,
T.
, 1992, “
Dynamic Characteristics of Multiple Tuned Mass Substructures With Closely Spaced Frequencies
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
21
(
12
), pp.
1059
1070
.
18.
Ikeda
,
T.
, 2007, “
Autoparametric Resonances in Elastic Structures Carrying Two Rectangular Tanks Partially Filled With Liquid
,”
J. Sound Vib.
0022-460X,
302
(
4-5
), pp.
657
682
.
19.
Ikeda
,
T.
,
Murakami
,
S.
, and
Ushio
,
S.
, 2009, “
Nonlinear Parametric Vibrations of Elastic Structures Containing Two Cylindrical Liquid-Filled Tanks
,”
Journal of System Design and Dynamics
,
3
(
1
), pp.
120
134
.
20.
Ikeda
,
T.
, 2005, “
Nonlinear Vibrations of Elastic Structures Carrying Two Rectangular Liquid-Filled Tanks Under Horizontal Excitation
,” ASME Paper No. DETC2005-84476.
21.
Stoker
,
J. J.
, 1950,
Nonlinear Vibrations
,
Wiley
,
New York
.
22.
Vakakis
,
A. F.
,
Manevitch
,
L. I.
,
Mikhlin
,
Y. V.
,
Philipchuck
,
V. N.
, and
Zevin
,
A. A.
, 1996,
Normal Modes and Localization in Nonlinear Systems
,
Wiley
,
New York
.
23.
Kerschen
,
G.
,
Peeters
,
M.
,
Golinval
,
J. C.
, and
Vakakis
,
A. F.
, 2009, “
Nonlinear Normal Modes, Part I: A Useful Framework for the Structural Dynamicist
,”
Mech. Syst. Signal Process.
0888-3270,
23
(
1
), pp.
170
194
.
24.
Vakais
,
A. F.
, and
Cetinkaya
,
C.
, 1993, “
Mode Localization in a Class of Multidegree-of-Freedom Nonlinear Systems With Cyclic Symmetry
,”
SIAM J. Appl. Math.
0036-1399,
53
(
1
), pp.
265
282
.
25.
King
,
M. E.
, and
Vakakis
,
A. F.
, 1995, “
A Very Complicated Structure of Resonances in a Nonlinear System With Cyclic Symmetry: Nonlinear Forced Localization
,”
Nonlinear Dyn.
0924-090X,
7
(
1
), pp.
85
104
.
26.
Ikeda
,
T.
, 2010, “
Bifurcation Phenomena Caused by Multiple Nonlinear Vibration Absorbers
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
5
(
2
), p.
021012
.
27.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
, 1995,
Applied Nonlinear Dynamics
,
Wiley
,
New York
.
28.
Wolf
,
A.
,
Swift
,
J. B.
,
Swinney
,
H. L.
, and
Vastano
,
J. A.
, 1985, “
Determining Lyapunov Exponents From a Time Series
,”
Physica D
0167-2789,
16
, pp.
285
317
.
29.
Doedel
,
E. J.
,
Champneys
,
A. R.
,
Fairgrieve
,
T. F.
,
Kuznetsov
,
Y. A.
,
Sandstede
,
B.
, and
Wang
,
X.
, 1997, “
Continuation and Bifurcation Software for Ordinary Differential Equations (With HomCont), AUTO97
,” Concordia University, Canada.
30.
Hayama
,
S.
,
Aruga
,
K.
, and
Watanabe
,
T.
, 1983, “
Nonlinear Response of Sloshing in Rectangular Tanks (1st Report, Nonlinear Response of Surface Eelevation)
,”
Bull. JSME
0021-3764,
26
(
219
), pp.
1641
1648
.
31.
Golubitsky
,
M.
,
Stewart
,
I.
, and
Schaffer
,
D.
, 1988,
Singularities and Groups in Bifurcation Theory
, Vol.
1
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.