A method for time delay vibration control of the principal and fundamental resonances of two nonlinearly coupled van der Pol oscillators is investigated Using the asymptotic perturbation method, four slow-flow equations on the amplitude and phase of the oscillators are obtained. Their fixed points correspond to a two-period quasi-periodic phase-locked motion for the original system. In the system without control, stable periodic solutions (if any) exist only for fixed values of amplitude and phase and depend on the system parameters and excitation amplitude. In many cases, the amplitudes of these solutions do not correspond to the technical requirements. On the contrary, it is demonstrated that, if vibration control terms are added, stable two-period quasi-periodic solutions with arbitrarily chosen amplitudes can be accomplished. Therefore, an effective vibration control is possible if appropriate time delay and feedback gains are chosen.

1.
Diekmann
,
O.
,
van Gils
,
S. A.
,
Verduyn Lunel
,
S. M.
, and
Walther
,
H. -O.
, 1995,
Delay Equations, Functional, Complex, and Nonlinear Analysis
,
Springer-Verlag
,
New York
.
2.
Chen
,
G.
,
Moiola
,
J. L.
, and
Wang
,
H. O.
, 2000, “
Bifurcation Control: Theories, Methods, and Applications
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
10
, pp.
511
548
.
3.
Meirovitch
,
L.
, 2004,
Methods of Analytical Dynamics
,
Dover
,
New York
.
4.
Moiola
,
J. L.
,
Berns
,
D. W.
, and
Chen
,
G.
, 1997, “
Feedback Control of Limit Cycle Amplitudes
,”
Proceedings of the IEEE Conference on Decision Control
, San Diego, CA, pp.
1479
1485
.
5.
Tang
,
J. -S.
,
Fu
,
W. -B.
, and
Li
,
K. -A.
, 2002, “
Bifurcations of a Parametrically Excited Oscillator With Strong Nonlinearity
,”
Chin. Phys.
1009-1963,
11
, pp.
1004
1007
.
6.
Ji
,
J. C.
, and
Leung
,
A. Y. T.
, 2002, “
Bifurcation Control of a Parametrically Excited Duffing System
,”
Nonlinear Dyn.
0924-090X,
27
, pp.
411
417
.
7.
Wirkus
,
S.
, and
Rand
,
R.
, 2002, “
The Dynamics of Two Coupled van der Pol Oscillators With Delay Coupling
,”
Nonlinear Dyn.
0924-090X,
30
, pp.
205
221
.
8.
Low
,
L. A.
,
Reinhall
,
P. G.
, and
Storti
,
D. W.
, 2003, “
An Investigation of Coupled van der Pol Oscillators
,”
J. Vibr. Acoust.
0739-3717,
125
, pp.
162
169
.
9.
Xu
,
J.
, and
Yu
,
P.
, 2004, “
Delay-Induced Bifurcation in an Nonautonomous System With Delayed Velocity Feedbacks
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
4
, pp.
1777
1798
.
10.
Tang
,
J. S.
, and
Chen
,
Z. L.
, 2006, “
Amplitude Control of Limit Cycle in van der Pol System
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
16
, pp.
487
495
.
11.
El-Bassiouny
,
A. F.
, 2006, “
Stability and Oscillation of Two Coupled Duffing Equations With Time Delay State Feedback
,”
Phys. Scr.
0031-8949,
74
, pp.
726
735
.
12.
El-Bassiouny
,
A. F.
, 2006, “
Fundamental and Subharmonic Resonances of Harmonic Oscillation With Time Delay State Feedback
,”
Shock Vib.
1070-9622,
13
, pp.
65
83
.
13.
Li
,
X.
,
Ji
,
J. C.
, and
Hansen
,
C. H.
, 2006, “
Dynamics of Two Delay Coupled van der Pol Oscillators
,”
Mech. Res. Commun.
0093-6413,
33
, pp.
614
627
.
14.
Lin
,
G.
, 2007, “
Periodic Solutions for van der Pol Equation With Time Delay
,”
Appl. Math. Comput.
0096-3003,
187
, pp.
1187
1198
.
15.
Niu
,
B.
, and
Wei
,
J. J.
, 2008, “
Stability and Bifurcation Analysis in an Amplitude Equation With Delayed Feedback
,”
Chaos, Solitons Fractals
0960-0779,
37
, pp.
1362
1371
.
16.
Sah
,
S.
, and
Belhaq
,
M.
, 2008, “
Effect of Vertical High-Frequency Parametric Excitation on Self-Excited Motion in a Delayed van der Pol Oscillator
,”
Chaos, Solitons Fractals
0960-0779,
37
, pp.
1489
1496
.
17.
Belhaq
,
M.
, and
Sah
,
S. M.
, 2008, “
Fast Parametrically Excited van der Pol Oscillator With Time Delay State Feedback
,”
Int. J. Non-Linear Mech.
0020-7462,
43
, pp.
124
130
.
18.
Maccari
,
A.
, 2001, “
The Response of a Parametrically Excited van der Pol Oscillator to a Time Delay State Feedback
,”
Nonlinear Dyn.
0924-090X,
26
, pp.
105
119
.
19.
Maccari
,
A.
, 2003, “
Vibration Control for the Primary Resonance of the van der Pol Oscillator by a Time Delay State Feedback
,”
Int. J. Non-Linear Mech.
0020-7462,
38
, pp.
123
131
.
20.
Maccari
,
A.
, 2004, “
Vibration Control for an Externally Excited Nonlinear System
,”
Phys. Scr.
0031-8949,
70
, pp.
79
85
.
21.
Maccari
,
A.
, 2005, “
Vibration Control for Two Nonlinearly Coupled and Parametrically Excited van der Pol Oscillators
,”
Phys. Scr.
0031-8949,
72
, pp.
112
118
.
22.
Maccari
,
A.
, 2006, “
Vibration Control for Parametrically Excited Liénard Systems
,”
Int. J. Non-Linear Mech.
0020-7462,
41
, pp.
146
155
.
23.
Maccari
,
A.
, 2007, “
Delayed Feedback Control for a Parametrically Excited van der Pol Oscillator
,”
Phys. Scr.
0031-8949,
76
, pp.
526
532
.
24.
Maccari
,
A.
, 2008, “
Arbitrary Amplitude Periodic Solutions for Parametrically Excited Systems With Time Delay
,”
Nonlinear Dyn.
0924-090X,
51
, pp.
111
126
.
You do not currently have access to this content.