The nonlinear responses of a single-degree-of-freedom system with two pendulum tuned mass dampers under horizontal sinusoidal excitation are investigated. In the theoretical analysis, van der Pol’s method is applied to determine the expressions for the frequency response curves. In the numerical results, the differences between the responses in single- and dual-pendulum systems are shown. A pitchfork bifurcation occurs followed by mode localization where both identical pendula vibrate at constant but different amplitudes. Hopf bifurcations occur, and then amplitude- and phase-modulated motions including chaotic vibrations appear in the identical dual-pendulum system. The Lyapunov exponents are calculated to prove the occurrence of chaotic vibrations. In a nonidentical dual-pendulum system, a perturbed pitchfork bifurcation occurs and saddle-node bifurcation points appear instead of pitchfork bifurcation points. Hopf bifurcations and amplitude- and phase-modulated motions also appear. The deviation of the tuning condition is also investigated by showing the frequency response curves and bifurcation sets. The numerical simulations are shown to be in good agreement with the theoretical results. In experiments, the imperfections of the two pendula were taken into consideration, and the validity of the theoretical analysis was confirmed.

1.
Roberson
,
R. E.
, 1952, “
Synthesis of a Nonlinear Dynamic Vibration Absorber
,”
J. Franklin Inst.
0016-0032,
254
, pp.
205
220
.
2.
Pipes
,
L. A.
, 1953, “
Analysis of a Nonlinear Dynamic Vibration Absorber
,”
ASME J. Appl. Mech.
0021-8936,
20
, pp.
515
518
.
3.
Nusse
,
H. E.
, and
Yorke
,
J. A.
, 1994,
Dynamics: Numerical Explorations, Applied Mathematical Sciences 101
,
Springer
,
New York
.
4.
Bajaj
,
A. K.
,
Chang
,
S. I.
, and
Johnson
,
J. M.
, 1994, “
Amplitude Modulated Dynamics of a Resonantly Excited Autoparametric Two Degree-of-Freedom System
,”
Nonlinear Dyn.
0924-090X,
5
(
4
), pp.
433
457
.
5.
Song
,
Y.
,
Sato
,
H.
,
Iwata
,
Y.
, and
Komatsuzaki
,
T.
, 2003, “
The Response of a Dynamic Vibration Absorber System With a Parametrically Excited Pendulum
,”
J. Sound Vib.
0022-460X,
259
(
4
), pp.
747
759
.
6.
Tondl
,
A.
,
Ruijgrok
,
T.
,
Verhulst
,
F.
, and
Nabergoj
,
R.
, 2000,
Autoparametric Resonance in Mechanical Systems
,
Cambridge University Press
,
Cambridge
.
7.
Vyas
,
A.
, and
Bajaj
,
A. K.
, 2001, “
Dynamics of Autoparametric Vibration Absorbers Using Multiple Pendulums
,”
J. Sound Vib.
0022-460X,
246
(
1
), pp.
115
135
.
8.
Vyas
,
A.
, and
Bajaj
,
A. K.
, 2006, “
Global Dynamics of an Autoparametric System With Multiple Pendulums
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
1
(
1
), pp.
35
46
.
9.
Ikeda
,
T.
, 2007, “
Autoparametric Resonances in Elastic Structures Carrying Two Rectangular Tanks Partially Filled With Liquid
,”
J. Sound Vib.
0022-460X,
302
(
4–5
), pp.
657
682
.
10.
Pierre
,
C.
,
Tang
,
D. M.
, and
Dowell
,
E. H.
, 1987, “
Localized Vibrations of Disordered Multispan Beams
,”
AIAA J.
0001-1452,
25
(
9
), pp.
1249
1257
.
11.
Vakais
,
A. F.
, and
Cetinkaya
,
C.
, 1993, “
Mode Localization in a Class of Multidegree-of-Freeom Nonlinear Systems With Cyclic Symmetry
,”
SIAM J. Appl. Math.
0036-1399,
53
(
1
), pp.
265
282
.
12.
Ikeda
,
T.
, 2010, “
Bifurcation Phenomena Caused by Multiple Nonlinear Dynamic Absorbers
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
5
(
2
), p.
021012
.
13.
Stoker
,
J. J.
, 1950,
Nonlinear Vibrations
,
Wiley
,
New York
.
14.
Wolf
,
A.
,
Swift
,
J. B.
,
Swinney
,
H. L.
, and
Vastano
,
J. A.
, 1985, “
Determining Lyapunov Exponents From a Time Series
,”
Physica D
0167-2789,
16
, pp.
285
317
.
15.
Rossler
,
O. E.
, 1979, “
An Equation for Hyperchaos
,”
Phys. Lett.
0375-9601,
71A
, pp.
155
157
.
16.
Doedel
,
E. J.
,
Champneys
,
A. R.
,
Fairgrieve
,
T. F.
,
Kuznetsov
,
Y. A.
,
Sandstede
,
B.
, and
Wang
,
X.
, 1997,
Continuation and Bifurcation Software for Ordinary Differential Equations (With HomCont), AUTO97
,
Concordia University Press
,
Canada
.
17.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
, 1995,
Applied Nonlinear Dynamics
,
Wiley
,
New York
.
You do not currently have access to this content.