This paper discusses the problem of control constraint realization applied to generic underactuated multibody systems. The conditions for the realization are presented. Focus is placed on the tangent realization of the control constraint. An alternative condition is formulated, based on the practical observation that differential-algebraic equations need to be integrated using implicit algorithms, thus naturally leading to the solution of the problem in form of matrix pencil. The analogy with the representation of linear systems in Laplace’s domain is also discussed. The formulation is applied to the solution of simple, yet illustrative problems, related to rigid and deformable bodies. Some implications of considering deformable continua are addressed.
Skip Nav Destination
e-mail: alessandro.fumagalli@polimi.it
e-mail: pierangelo.masarati@polimi.it
e-mail: marco.morandini@polimi.it
e-mail: paolo.mantegazza@polimi.it
Article navigation
January 2011
Research Papers
Control Constraint Realization for Multibody Systems
Alessandro Fumagalli,
Alessandro Fumagalli
Dipartimento di Ingegneria Aerospaziale,
e-mail: alessandro.fumagalli@polimi.it
Politecnico di Milano
, Milano 20156, Italy
Search for other works by this author on:
Pierangelo Masarati,
Pierangelo Masarati
Dipartimento di Ingegneria Aerospaziale,
e-mail: pierangelo.masarati@polimi.it
Politecnico di Milano
, Milano 20156, Italy
Search for other works by this author on:
Marco Morandini,
Marco Morandini
Dipartimento di Ingegneria Aerospaziale,
e-mail: marco.morandini@polimi.it
Politecnico di Milano
, Milano 20156, Italy
Search for other works by this author on:
Paolo Mantegazza
Paolo Mantegazza
Dipartimento di Ingegneria Aerospaziale,
e-mail: paolo.mantegazza@polimi.it
Politecnico di Milano
, Milano 20156, Italy
Search for other works by this author on:
Alessandro Fumagalli
Dipartimento di Ingegneria Aerospaziale,
Politecnico di Milano
, Milano 20156, Italye-mail: alessandro.fumagalli@polimi.it
Pierangelo Masarati
Dipartimento di Ingegneria Aerospaziale,
Politecnico di Milano
, Milano 20156, Italye-mail: pierangelo.masarati@polimi.it
Marco Morandini
Dipartimento di Ingegneria Aerospaziale,
Politecnico di Milano
, Milano 20156, Italye-mail: marco.morandini@polimi.it
Paolo Mantegazza
Dipartimento di Ingegneria Aerospaziale,
Politecnico di Milano
, Milano 20156, Italye-mail: paolo.mantegazza@polimi.it
J. Comput. Nonlinear Dynam. Jan 2011, 6(1): 011002 (8 pages)
Published Online: September 27, 2010
Article history
Received:
May 27, 2009
Revised:
November 10, 2009
Online:
September 27, 2010
Published:
September 27, 2010
Citation
Fumagalli, A., Masarati, P., Morandini, M., and Mantegazza, P. (September 27, 2010). "Control Constraint Realization for Multibody Systems." ASME. J. Comput. Nonlinear Dynam. January 2011; 6(1): 011002. https://doi.org/10.1115/1.4002087
Download citation file:
Get Email Alerts
Nonlinear Dynamics of a Magnetic Shape Memory Alloy Oscillator
J. Comput. Nonlinear Dynam
Input–Output Finite-Time Bipartite Synchronization for Multiweighted Complex Dynamical Networks Under Dynamic Hybrid Triggering Mechanism
J. Comput. Nonlinear Dynam (November 2024)
A Universal and Efficient Quadrilateral Shell Element Based on Absolute Nodal Coordinate Formulation for Thin Shell Structures With Complex Surfaces
J. Comput. Nonlinear Dynam (November 2024)
Dynamic Simulation and Collision Detection for Flexible Mechanical Systems With Contact Using the Floating Frame of Reference Formulation
J. Comput. Nonlinear Dynam (November 2024)
Related Articles
A Practical Approach for the Linearization of the Constrained Multibody Dynamics Equations
J. Comput. Nonlinear Dynam (July,2006)
The Optimal Control Approach to Dynamical Inverse Problems
J. Dyn. Sys., Meas., Control (March,2012)
A PID Type Constraint Stabilization Method for Numerical Integration of Multibody Systems
J. Comput. Nonlinear Dynam (October,2011)
Use of the Non-Inertial Coordinates in the Analysis of Train Longitudinal Forces
J. Comput. Nonlinear Dynam (January,2012)
Related Proceedings Papers
Related Chapters
Alternating Lower-Upper Splitting Iterative Method for Positive Definite Linear Systems
International Conference on Information Technology and Computer Science, 3rd (ITCS 2011)
Solving Linear Systems
The Finite Element Method: From Theory to Practice
Dynamics Simulation Analysis of Bridge Crane Hoisting Mechanism Based on Adams
International Conference on Mechanical and Electrical Technology 2009 (ICMET 2009)