Consideration is given to a very specific interaction phenomenon that may occur in turbomachines due to radial rub between a bladed disk and surrounding casing. These two structures, featuring rotational periodicity and axisymmetry, respectively, share the same type of eigenshapes, also termed nodal diameter traveling waves. Higher efficiency requirements leading to reduced clearance between blade-tips and casing together with the rotation of the bladed disk increase the possibility of interaction between these traveling waves through direct contact. By definition, large amplitudes as well as structural failure may be expected. A very simple two-dimensional model of outer casing and bladed disk is introduced in order to predict the occurrence of such phenomenon in terms of rotational velocity. In order to consider traveling wave motions, each structure is represented by its two nd-nodal diameter standing modes. Equations of motion are solved first using an explicit time integration scheme in conjunction with the Lagrange multiplier method, which accounts for the contact constraints, and then by the harmonic balance method (HBM). While both methods yield identical results that exhibit two distinct zones of completely different behaviors of the system, HBM is much less computationally expensive.

1.
Lee
,
C. -W.
, 1993,
Vibration Analysis of Rotors
,
Kluwer Academic
,
Dordrecht
.
2.
Childs
,
D.
, 1993,
Turbomachinery Rotordynamics Phenomena, Modeling and Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
3.
Vance
,
J. M.
, 1987,
Rotordynamics of Turbomachinery
,
Wiley-Interscience
,
New York
.
4.
Choi
,
Y.
, 2002, “
Investigation on the Whirling Motion of Full Annular Rotor Rub
,”
J. Sound Vib.
0022-460X,
258
, pp.
191
198
.
5.
Muszynska
,
A.
, and
Goldman
,
P.
, 1995, “
Chaotic Responses of Unbalanced Rotor/Bearing/Stator Systems With Looseness or Rubs
,”
Chaos, Solitons Fractals
0960-0779,
5
, pp.
1683
1704
.
6.
Sinha
,
S. K.
, 2005, “
Non-Linear Dynamic Response of a Rotating Radial Timoshenko Beam With Periodic Pulse Loading at the Free-End
,”
Int. J. Non-Linear Mech.
0020-7462,
40
, pp.
113
149
.
7.
Lesaffre
,
N.
,
Sinou
,
J. -J.
, and
Thouverez
,
F.
, 2007, “
Contact Analysis of a Flexible Bladed-Rotor
,”
Eur. J. Mech. A/Solids
0997-7538,
26
, pp.
541
557
.
8.
Genta
,
G.
, 2004, “
On the Stability of Rotating Blade Arrays
,”
J. Sound Vib.
0022-460X,
273
(
4–5
), pp.
805
836
.
9.
Arnoult
,
E.
, 2000, “
Modélisation Numérique et Approche Expérimentale du Contact en Dynamique: Application au Contact Aubes/Carter de Turboréacteur
,” Ph.D. thesis, École Centrale de Nantes, Nantes, France.
10.
Schmiechen
,
P.
, 1997, “
Travelling Wave Speed Coincidence
,” Ph.D. thesis, College of Science, Technology and Medicine, London, UK.
11.
Legrand
,
M.
,
Peseux
,
B.
,
Pierre
,
C.
, and
Seinturier
,
E.
, 2003,
Amélioration de la prédiction de l’interaction rotor/stator dans un moteur d’avion
,
Colloque National en Calcul des Structures
,
Giens, France
.
12.
Belytschko
,
T.
,
Liu
,
W.
, and
Moran
,
B.
, 2000,
Nonlinear Finite Elements for Continua and Structures
,
Wiley
,
New York
.
13.
Nayfeh
,
A.
, and
Mook
,
D.
, 1979,
Nonlinear Oscillations
,
Willey-Interscience
,
New York
.
14.
Bladh
,
R.
, 2001, “
Efficient Predictions of the Vibratory Response of Mistuned Bladed Disks by Reduced Order Modeling
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
15.
Meirovitch
,
L.
, 1997,
Principles and Techniques of Vibrations
,
Prentice-Hall
,
Upper Saddle River, NJ
.
16.
Bathe
,
K. -J.
, 1996,
Finite Element Procedures
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
17.
Vola
,
D.
,
Pratt
,
E.
,
Raous
,
M.
, and
Jean
,
M.
, 1998, “
Consistent Time Discretization for a Dynamical Contact Problem and Complementarity Techniques
,”
European Journal of Computational Mechanics
,
7
, pp.
149
162
.
18.
Linck
,
V.
,
Bayada
,
G.
,
Baillet
,
L.
, and
Sabil
,
J.
, 2005, “
Finite Element Analysis of a Contact With Friction Between an Elastic Body and a Thin Soft Layer
,”
ASME J. Tribol.
0742-4787,
127
, pp.
461
468
.
19.
Carpenter
,
N. J.
,
Taylor
,
R. L.
, and
Katona
,
M. G.
, 1991, “
Lagrange Constraints for Transient Finite Element Surface Contact
,”
Int. J. Numer. Methods Eng.
0029-5981,
32
, pp.
103
128
.
20.
Wriggers
,
P.
, 2002,
Computational Contact Mechanics
,
Wiley
,
New York
.
21.
Pierre
,
C.
,
Ferri
,
A.
, and
Dowell
,
E.
, 1985, “
Multi Harmonic Analysis of Dry Friction Damped Systems Using an Incremental Harmonic Balance Method
,”
ASME J. Appl. Mech.
0021-8936,
52
, pp.
958
964
.
22.
Von Groll
,
G.
, and
Ewins
,
D. J.
, 2001, “
The Harmonic Balance Method With Arc-Length Continuation in Rotor/Stator Contact Problems
,”
J. Sound Vib.
0022-460X,
241
(
2
), pp.
223
233
.
23.
Poudou
,
O.
, and
Pierre
,
C.
, 2002, “
Hybrid Frequency-Time Domain Methods for the Analysis of Complex Structural Systems With Dry Friction Damping
,”
ASME
Paper No. 2003-1411.
24.
Nacivet
,
S.
,
Pierre
,
C.
,
Thouverez
,
F.
, and
Jezequel
,
L.
, 2003, “
A Dynamic Lagrangian Frequency-Time Method for the Vibration of Dry-Friction-Damped Systems
,”
J. Sound Vib.
0022-460X,
265
, pp.
201
219
.
25.
Laursen
,
T.
, 2003,
Computational Contact and Impact Mechanics
,
Springer
,
Berlin
.
You do not currently have access to this content.