Three formulations for a flexible spatial beam element for dynamic analysis are compared: a Timoshenko beam with large displacements and rotations, a fully parametrized element according to the absolute nodal coordinate formulation (ANCF), and an ANCF element based on an elastic line approach. In the last formulation, the shear locking of the antisymmetric bending mode is avoided by the application of either the two-field Hellinger–Reissner or the three-field Hu–Washizu variational principle. The comparison is made by means of linear static deflection and eigenfrequency analyses on stylized problems. It is shown that the ANCF fully parametrized element yields too large torsional and flexural rigidities, and shear locking effectively suppresses the antisymmetric bending mode. The presented ANCF formulation with the elastic line approach resolves most of these problems.

1.
Fraeijs de Veubeke
,
B.
, 1976, “
The Dynamics of Flexible Bodies
,”
Int. J. Eng. Sci.
0020-7225,
14
, pp.
895
913
.
2.
Song
,
J. O.
, and
Haug
,
E. J.
, 1980, “
Dynamic Analysis of Planar Flexible Mechanisms
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
24
, pp.
359
381
.
3.
Shabana
,
A.
, and
Wehage
,
R. A.
, 1983, “
Variable Degree-of-Freedom Component Mode Analysis of Inertia Variant Flexible Mechanical Systems
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
105
, pp.
371
378
.
4.
Wallrapp
,
O.
, and
Schwertassek
,
R.
, 1991, “
Representation of Geometric Stiffening in Multibody System Simulation
,”
Int. J. Numer. Methods Eng.
0029-5981,
32
, pp.
1833
1850
.
5.
van der Werff
,
K.
, and
Jonker
,
J. B.
, 1984, “
Dynamics of Flexible Mechanisms
,”
Computer Aided Analysis and Optimization of Mechanical System Dynamics
,
E. J.
Haug
, ed.,
Springer-Verlag
,
Berlin
, pp.
381
400
.
6.
Jonker
,
J. B.
, and
Meijaard
,
J. P.
, 1990, “
SPACAR—Computer Program for Dynamic Analysis of Flexible Spatial Mechanisms and Manipulators
,”
Multibody Systems Handbook
,
W. O.
Schiehlen
, ed.,
Springer-Verlag
,
Berlin
, pp.
123
143
.
7.
Meijaard
,
J. P.
, 1996, “
Validation of Flexible Beam Elements in Dynamics Programs
,”
Nonlinear Dyn.
0924-090X,
9
, pp.
21
36
.
8.
Meijaard
,
J. P.
, 2001, “
Some Developments in the Finite Element Modelling and Solution Techniques for Flexible Multibody Dynamical Systems
,”
Euroconference on Computational Mechanics and Engineering Practice
, Szczyrk, Poland, Sept. 19–21,
J.
Stadnicki
, ed.,
University of Łódź
,
Bielsko-Biała
,
Poland
, pp.
48
55
.
9.
Schwab
,
A. L.
, 2002, “
Dynamics of Flexible Multibody Systems, Small Vibrations Superimposed on a General Rigid Body Motion
,” Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
10.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
, 1986, “
A Three-Dimensional Finite-Strain Rod Model. Part II: Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
58
, pp.
79
115
.
11.
Shabana
,
A. A.
, 1997, “
Flexible Multibody Dynamics: Review of Past and Recent Developments
,”
Multibody Syst. Dyn.
1384-5640,
1
, pp.
189
222
.
12.
Shabana
,
A. A.
, 1998, “
Computer Implementation of the Absolute Nodal Coordinate Formulation for Flexible Multibody Dynamics
,”
Nonlinear Dyn.
0924-090X,
16
, pp.
293
306
.
13.
Sopanen
,
J. T.
, and
Mikkola
,
A. M.
, 2003, “
Description of Elastic Forces in Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
0924-090X,
34
, pp.
53
74
.
14.
Gerstmayr
,
J.
, and
Shabana
,
A. A.
, 2006, “
Analysis of Thin Beams and Cables Using the Absolute Nodal Co-Ordinate Formulation
,”
Nonlinear Dyn.
0924-090X,
45
, pp.
109
130
.
15.
Sugiyama
,
H.
,
Gertsmayr
,
J.
, and
Shabana
,
A. A.
, 2006, “
Deformation Modes in the Finite Element Absolute Nodal Coordinate Formulation
,”
J. Sound Vib.
0022-460X,
298
, pp.
1129
1149
.
16.
Schwab
,
A. L.
, and
Meijaard
,
J. P.
, 2005, “
Comparison of Three-Dimensional Flexible Beam Elements for Dynamic Analysis: Finite Element Method and Absolute Nodal Coordinate Formulation
,”
Proceedings of the IDETC/CIE 2005, ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Long Beach, CA, Sept. 24–28,
ASME
,
New York
, CD-ROM.
17.
Yakoub
,
R. Y.
, and
Shabana
,
A. A.
, 2001, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Implementation and Applications
,”
ASME J. Mech. Des.
0161-8458,
123
, pp.
614
621
.
18.
Shabana
,
A. A.
, and
Yakoub
,
R. Y.
, 2001, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory
,”
ASME J. Mech. Des.
0161-8458,
123
, pp.
606
613
.
19.
Reissner
,
E.
, 1953, “
On a Variational Theorem for Finite Elastic Deformations
,”
J. Math. Phys.
0022-2488,
32
, pp.
129
135
.
20.
Washizu
,
K.
, 1982,
Variational Methods in Elasticity and Plasticity
,
Pergamon
,
New York
.
21.
Cowper
,
G. R.
, 1966, “
The Shear Coefficient in Timoshenko’s Beam Theory
,”
ASME J. Appl. Mech.
0021-8936,
33
, pp.
335
340
.
22.
Argyris
,
J. H.
, 1966, “
Continua and Discontinua, an Aperçu of Recent Developments of the Matrix Displacement Methods
,”
Matrix Methods in Structural Mechanics
,
J. S.
Przemienniecki
,
R. M.
Bader
,
W. F.
Bozich
,
J. R.
Johnson
, and
W. J.
Mykytow
, eds.,
Wright-Patterson Air Force Base
,
Dayton, OH
, pp.
11
189
.
23.
Przemieniecki
,
J. S.
, 1968,
Theory of Matrix Structural Analysis
,
McGraw-Hill
,
New York
.
24.
Fraeijs de Veubeke
,
B.
, 1965, “
Displacement and Equilibrium Models in the Finite Element Method
,”
Stress Analysis, Recent Developments in Numerical and Experimental Methods
,
O. C.
Zienkiewicz
and
G. S.
Holister
, eds.,
Wiley
,
New York
, Chap. 9, pp.
145
197
[reprinted in International Journal for Numerical Methods in Engineering, 52, 2001, pp. 287–342].
25.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
, 1987,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.