Abstract
This paper presents a comparative analysis on the space manipulator systems dynamics modeling approaches, namely, the standard approach (SA) and the dual quaternion based dynamics modeling approach. A detailed analysis supported by the results from numerical simulations, comparing the two approaches in terms of operational count and execution time, has been presented to determine which approach is computationally and temporally efficient.
Issue Section:
Research Papers
References
1.
Hu
, J.
, and Wang
, T.
, 2018
, “Minimum Base Attitude Disturbance Planning for a Space Robot During Target Capture
,” ASME J. Mech. Rob.
, 10
(5
), p. 051002
.10.1115/1.40404352.
Zhao
, C.
, Wang
, K.
, Zhao
, H.
, Guo
, H.
, and Liu
, R.
, 2022
, “Kinematics, Dynamics, and Experiments of n(3RRlS) Reconfigurable Series–Parallel Manipulators for Capturing Space Noncooperative Targets
,” ASME J. Mech. Rob.
, 14
(6
), p. 060902
.10.1115/1.40542453.
Megalingam
, R. K.
, Tantravahi
, S.
, Tammana
, H. S. S. K.
, and Puram
, H. S. R.
, 2023
, “2D-3D Hybrid Mapping for Path Planning in Autonomous Robots
,” Int. J. Intell. Rob. Appl.
, 7
(2
), pp. 291
–303
.10.1007/s41315-023-00272-44.
Carignan
, C.
, and Akin
, D.
, 2000
, “The Reaction Stabilization of On-Orbit Robots
,” IEEE Control Syst. Mag.
, 20
(6
), pp. 19
–33
.10.1109/37.8874465.
Deng
, Y.
, Qiao
, B.
, Qin
, H.
, and Wu
, W.
, 2022
, “Hybrid Dynamics Modeling and Motion Planning for Free-Floating Multi-Arm Space Robot
,” 2022 IEEE Fifth Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC
), Vol. 5, Chongqing, China, Dec. 16–18, pp. 1655
–1660
.10.1109/IMCEC55388.2022.100198336.
Rodrigues
, G. S.
, and Pazelli
, T. F. P. A. T.
, 2021
, “Dynamic Modeling and Control Optimization of Free-Floating Dual-Arm Space Robots in Task Space
,” 2021 Latin American Robotics Symposium (LARS), 2021 Brazilian Symposium on Robotics (SBR), and 2021 Workshop on Robotics in Education (WRE
), Natal, Brazil, Oct. 11–15, pp. 168
–173
.10.1109/LARS/SBR/WRE54079.2021.96054697.
Balderas Hill
, R.
, Briot
, S.
, Chriette
, A.
, and Martinet
, P.
, 2022
, “Performing Energy-Efficient Pick-and-Place Motions for High-Speed Robots by Using Variable Stiffness Springs
,” ASME J. Mech. Rob.
, 14
(5
), p. 051004
.10.1115/1.40531588.
Featherstone
, R.
, 2008
, Rigid Body Dynamics Algorithms
, Springer
, Berlin, Germany
.9.
Jain
, A.
, 1991
, “Unified Formulation of Dynamics for Serial Rigid Multibody Systems
,” J. Guid., Control, Dyn.
, 14
(3
), pp. 531
–542
.10.2514/3.2067210.
Craig
, J. J.
, 2006
, Introduction to Robotics: Mechanics and Control
, Pearson Education
, London, UK.11.
Rodriguez
, G.
, Jain
, A.
, and Kreutz-Delgado
, K.
, 1991
, “A Spatial Operator Algebra for Manipulator Modeling and Control
,” Int. J. Rob. Res.
, 10
(4
), pp. 371
–381
.10.1177/02783649910100040612.
Xinfeng
, G.
, and Jingtao
, J.
, 2010
, “Dynamics Analyze of a Dual-Arm Space Robot System Based on Kane's Method
,” Second International Conference on Industrial Mechatronics and Automation
, Vol. 2, Wuhan, China, May 30–31, pp. 646
–649
.10.1109/ICINDMA.2010.553822313.
Dubowsky
, S.
, and Papadopoulos
, E.
, 1993
, “The Kinematics, Dynamics, and Control of Free-Flying and Free-Floating Space Robotic Systems
,” IEEE Trans. Rob. Autom.
, 9
(5
), pp. 531
–543
.10.1109/70.25804614.
Vafa
, Z.
, and Dubowsky
, S.
, 1990
, “The Kinematics and Dynamics of Space Manipulators: The Virtual Manipulator Approach
,” Int. J. Rob. Res.
, 9
(4
), pp. 3
–21
.10.1177/02783649900090040115.
Valverde
, A.
, and Tsiotras
, P.
, 2018
, “Spacecraft Robot Kinematics Using Dual Quaternions
,” Robotics
, 7
(4
), p. 64
.10.3390/robotics704006416.
Valverde
, A.
, and Tsiotras
, P.
, 2018
, “Dual Quaternion Framework for Modeling of Spacecraft-Mounted Multibody Robotic Systems
,” Front. Rob. AI
, 5
, pp. 1
–17
.10.3389/frobt.2018.0012817.
Valverde
, A.
, and Tsiotras
, P.
, 2018
, “Modeling of Spacecraft-Mounted Robot Dynamics and Control Using Dual Quaternions
,” 2018 Annual American Control Conference (ACC
), Milwaukee, WI, June 27–29, pp. 670
–675
.10.23919/ACC.2018.843105418.
Cohen
, A.
, Taub
, B.
, and Shoham
, M.
, 2024
, “Dual Quaternions Representation of Lagrange's Dynamic Equations
,” ASME J. Mech. Rob.
, 16
(4
), p. 041004
.10.1115/1.406246319.
Kozlowski
, K.
, 1995
, “Standard and Diagonalized Lagrangian Dynamics: A Comparison
,” Proceedings of 1995 IEEE International Conference on Robotics and Automation
, Vol. 3, Nagoya, Japan, May 21–27, pp. 2823
–2828
.10.1109/ROBOT.1995.52568320.
Walker
, M. W.
, and Orin
, D. E.
, 1982
, “Efficient Dynamic Computer Simulation of Robotic Mechanisms
,” ASME J. Dyn. Syst., Meas., Control
, 104
(3
), pp. 205
–211
.10.1115/1.313969921.
Luh
, J. Y. S.
, Walker
, M. W.
, and Paul
, R. P. C.
, 1980
, “On-Line Computational Scheme for Mechanical Manipulators
,” ASME J. Dyn. Syst., Meas., Control
, 102
(2
), pp. 69
–76
.10.1115/1.314959922.
Papadopoulos
, E.
, Aghili
, F.
, Ma
, O.
, and Lampariello
, R.
, 2021
, “Robotic Manipulation and Capture in Space: A Survey
,” Front. Rob. AI
, 8
, pp. 1
–36
.10.3389/frobt.2021.68672323.
The MathWorks, Inc.
, 2023
, “MATLAB Version: 23.2.0.2599560 (R2023b)
,” The MathWorks, Natick, MA, accessed Oct. 23, 2024, https://www.mathworks.com24.
MathWorks, 2024, “Compare Solvers,” The MathWorks, Natick, MA, accessed Oct. 23, 2024, https://kr.mathworks.com/help/simulink/ug/compare-solvers.html
25.
MathWorks, 2024, “ode113,” The MathWorks, Natick, MA, accessed Oct. 23, 2024, https://kr.mathworks.com/help/matlab/ref/ode113.html
Copyright © 2025 by ASME
You do not currently have access to this content.