The paper presents a terminal sliding mode controller for a certain class of disturbed nonlinear dynamical systems. The class of such systems is described by nonlinear second-order differential equations with an unknown and bounded disturbance. A sliding surface is defined by the system state and the desired trajectory. The control law is designed to force the trajectory of the system from any initial condition to the sliding surface within a finite time. The trajectory of the system after reaching the sliding surface remains on it. A computer simulation is included as an example to verify the approach and to demonstrate its effectiveness.
Issue Section:
Technical Brief
References
1.
Edward
, C.
, and Spurgeon
, S.
, 1998
, Sliding Mode Control: Theory and Applications
, Taylor and Francis
, London
.2.
Liu
, J.
, and Wang
, X.
, 2011
, Advanced Sliding Mode Control for Mechanical Systems
, Springer, Heidelberg
, Dordrecht, London, New York
.3.
Bandyopadhyay
, B.
, Deepak
, F.
, and Kim
, K.
, 2010
, Sliding Mode Control Using Novel Sliding Surfaces
, Springer-Verlag
, Berlin, Heidelberg
.4.
Liu
, J.
, and Sun
, F.
, 2007
, “A Novel Dynamic Terminal Sliding Mode Control of Uncertain Nonlinear Systems
,” J. Control Theory Appl.
, 5
(2
), pp. 189
–193
.5.
Man
, Z.
, and Yu
, X.
, 1997
, “Terminal Sliding Mode Control of Mimo Linear Systems
,” IEEE Trans. Circuits Syst.
, 44
(11
), pp. 1065
–1070
.6.
Mobayen
, S.
, Majd
, V.
, and Sojoodi
, M.
, 2012
, “An LMI-Based Composite Nonlinear Feedback Terminal Sliding-Mode Controller Design for Disturbed Mimo Systems
,” Math. Comput. Simul.
, 85
(11
), pp. 1
–10
.7.
Zhihong
, M.
, Paplinski
, A.
, and Wu
, H.
, 1994
, “A Robust Mimo Terminal Sliding Mode Control Scheme for Rigid Robotic Manipulators
,” IEEE Trans. Autom. Control
, 39
(12
), pp. 2464
–2469
.8.
Mezghani
, N.
, Romdhane
, B.
, and Damak
, T.
, 2010
, “Terminal Sliding Mode Feedback Linearization Control
,” Int. J. Sci. Tech. Autom. Control Comput. Eng.
, 4
(1
), pp. 1174
–1187
.9.
Wu
, Y.
, Yu
, X.
, and Man
, Z.
, 1998
, “Terminal Sliding Mode Control Design for Uncertain Dynamic Systems
,” Syst. Control Lett.
, 34
(5
), pp. 281
–287
.10.
Xiang
, W.
, and Huangpu
, Y.
, 2010
, “Second-Order Terminal Sliding Mode Controller for a Class of Chaotic Systems With Unmatched Uncertainties
,” Commun. Nonlinear Sci. Numer. Simul.
, 15
(6
), pp. 3241
–3247
.11.
Li
, J.
, Gao
, F.
, Wang
, G.
, Wang
, M.
, Zhu
, W.
, and Li
, Q.
, 2013
, “Nonsingular Terminal Sliding Mode Control Based on Novel Reaching Law for Nonlinear Uncertain System
,” Appl. Mech. Mater.
, 347–350
, pp. 302
–306
.12.
Yang
, L.
, and Yang
, J.
, 2011
, “Nonsingular Fast Terminal Sliding-Mode Control for Nonlinear Dynamical Systems
,” Int. J. Robust Nonlinear Control
, 21
(16
), pp. 1865
–1879
.13.
Yu
, X.
, and Zhihong
, M.
, 2002
, “Fast Terminal Sliding-Mode Control Design for Nonlinear Dynamical Systems
,” IEEE Trans. Circuits Syst.
, 49
(2
), pp. 261
–264
.14.
Tao
, C.
, and Taur
, J.
, 2004
, “Adaptive Fuzzy Terminal Sliding Mode Controller for Linear Systems With Mismatched Time-Varying Uncertainties
,” IEEE Trans. Syst., Man, Cybernetics, Part B
, 34
(1
), pp. 255
–262
.15.
Mon
, Y.
, 2013
, “Terminal Sliding Mode Fuzzy-PDC Control for Nonlinear Systems
,” Int. J. Sci. Technol. Res.
, 2
(4
), pp. 218
–221
.16.
Mitkowski
, W.
, and Skruch
, P.
, 2013
, “Fractional-Order Models of the Supercapacitors in the Form of RC Ladder Networks
,” Bull. Pol. Acad. Sci.: Tech. Sci.
, 61
(3
), pp. 100
–106
.17.
Wang
, Y.
, Luo
, G.
, Gu
, L.
, and Li
, X.
, 2015
, “Fractional-Order Nonsingular Terminal Sliding Mode Control of Hydraulic Manipulators Using Time Delay Estimation
,” J. Vib. Control
.18.
Feng
, Y.
, Yu
, X.
, and Zheng
, Z.
, 2006
, “Second-Order Terminal Sliding Mode Control of Input-Delay Systems
,” Asian J. Control
, 8
(1
), pp. 12
–20
.19.
Rasvan
, V.
, 2011
, “Stability and Sliding Modes for a Class of Nonlinear Time Delay Systems
,” Math. Bohemica
, 136
(2
), pp. 155
–164
.20.
Yu
, S.
, Yu
, X.
, Shirinzadeh
, B.
, and Man
, Z.
, 2005
, “Continuous Finite-Time Control for Robotic Manipulators With Terminal Sliding Mode
,” Automatica
, 41
(11
), pp. 1957
–1964
.21.
Feng
, Y.
, Yu
, X.
, and Man
, Z.
, 2002
, “Non-Singular Terminal Sliding Mode Control of Rigid Manipulators
,” Automatica
, 38
(12
), pp. 2159
–2167
.22.
Skruch
, P.
, 2010
, “Feedback Stabilization of a Class of Nonlinear Second-Order Systems
,” Nonlinear Dyn.
, 59
(2
), pp. 681
–692
.Copyright © 2016 by ASME
You do not currently have access to this content.