Based on Mindlin's strain gradient elasticity and first-order shear deformation plate theory, a size-dependent quadrilateral plate element is developed in this paper to study the nonlinear static bending of microplates. In comparison with the classical first-order shear deformable quadrilateral plate element, the proposed element needs 15 additional nodal degrees-of-freedom (DOF) including derivatives of lateral deflection and rotations with respect to coordinates, which means a total of 20DOFs per node. Also, the developed strain gradient-based finite-element formulation is general so that it can be reduced to that on the basis of modified couple stress theory (MCST) and modified strain gradient theory (MSGT). In the numerical results, the nonlinear bending response of microplates for different boundary conditions, length-scale factors, and geometrical parameters is studied. It is revealed that by the developed nonclassical finite-element approach, the nonlinear behavior of microplates with the consideration of strain gradient effects can be accurately studied.

References

1.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Ashby
,
M. F.
, and
Hutchinson
,
J. W.
,
1994
, “
Strain Gradient Plasticity: Theory and Experiment
,”
Acta Metall. Mater.
,
42
(
2
), pp.
475
487
.
2.
Nix
,
W. D.
, and
Gao
,
H.
,
1998
, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
46
(
3
), pp.
411
425
.
3.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
2001
, “
A Reformulation of Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
49
(
10
), pp.
2245
2271
.
4.
Gurtin
,
M. E.
,
2004
, “
A Gradient Theory of Small-Deformation Isotropic Plasticity That Accounts for the Burgers Vector and for Dissipation Due to Plastic Spin
,”
J. Mech. Phys. Solids
,
52
(
11
), pp.
2545
2568
.
5.
McFarland
,
A. W.
, and
Colton
,
J. S.
,
2005
, “
Role of Material Microstructure in Plate Stiffness With Relevance to Microcantilever Sensors
,”
J. Micromech. Microeng.
,
15
(
5
), pp.
1060
1067
.
6.
Mindlin
,
R. D.
, and
Tiersten
,
H. F.
,
1962
, “
Effects of Couple-Stresses in Linear Elasticity
,”
Arch. Ration. Mech. Anal.
,
11
(
1
), pp.
415
448
.
7.
Koiter
,
W. T.
,
1964
, “
Couple Stresses in the Theory of Elasticity
,”
Proc. K. Ned. Akad. Wet. B
,
67
, pp.
17
44
.
8.
Mindlin
,
R. D.
,
1964
, “
Micro-Structure in Linear Elasticity
,”
Arch. Ration. Mech. Anal.
,
6
, pp.
51
78
.
9.
Mindlin
,
R. D.
,
1965
, “
Second Gradient of Strain and Surface Tension in Linear Elasticity
,”
Int. J. Solids Struct.
,
1
(
4
), pp.
417
438
.
10.
Yang
,
F.
,
Chong
,
A. C. M.
,
Lam
,
D. C. C.
, and
Tong
,
P.
,
2002
, “
Couple Stress Based Strain Gradient Theory for Elasticity
,”
Int. J. Solids Struct.
,
39
(
10
), pp.
2731
2743
.
11.
Lam
,
D. C. C.
,
Yang
,
F.
,
Chong
,
A. C. M.
,
Wang
,
J.
, and
Tong
,
P.
,
2003
, “
Experiments and Theory in Strain Gradient Elasticity
,”
J. Mech. Phys. Solids
,
51
(
8
), pp.
1477
1508
.
12.
Ke
,
L. L.
,
Wang
,
Y. S.
,
Yang
,
J.
, and
Kitipornchai
,
S.
,
2012
, “
Nonlinear Free Vibration of Size-Dependent Functionally Graded Microbeams
,”
Int. J. Eng. Sci.
,
50
(
1
), pp.
256
267
.
13.
Wang
,
Y. G.
,
Lin
,
W. H.
, and
Liu
,
N.
,
2013
, “
Nonlinear Free Vibration of a Microscale Beam Based on Modified Couple Stress Theory
,”
Physica E
,
47
, pp.
80
85
.
14.
Ke
,
L. L.
,
Yang
,
J.
,
Kitipornchai
,
S.
,
Bradford
,
M. A.
, and
Wang
,
Y. S.
,
2013
, “
Axisymmetric Nonlinear Free Vibration of Size-Dependent Functionally Graded Annular Microplates
,”
Compos. Part B: Eng.
,
53
, pp.
207
217
.
15.
Wang
,
Y. G.
,
Lin
,
W. H.
, and
Liu
,
N.
,
2013
, “
Large Amplitude Free Vibration of Size-Dependent Circular Microplates Based on the Modified Couple Stress Theory
,”
Int. J. Mech. Sci.
,
71
, pp.
51
57
.
16.
Farokhi
,
H.
,
Ghayesh
,
M. H.
, and
Amabili
,
M.
,
2013
, “
Nonlinear Dynamics of a Geometrically Imperfect Microbeam Based on the Modified Couple Stress Theory
,”
Int. J. Eng. Sci.
,
68
, pp.
11
23
.
17.
Ghayesh
,
M. H.
,
Amabili
,
M.
, and
Farokhi
,
H.
,
2013
, “
Nonlinear Forced Vibrations of a Microbeam Based on the Strain Gradient Elasticity Theory
,”
Int. J. Eng. Sci.
,
63
, pp.
52
60
.
18.
Ansari
,
R.
,
Faghih Shojaei
,
M.
,
Mohammadi
,
V.
,
Gholami
,
R.
, and
Darabi
,
M. A.
,
2014
, “
Nonlinear Vibrations of Functionally Graded Mindlin Microplates Based on the Modified Couple Stress Theory
,”
Compos. Struct.
,
114
, pp.
124
134
.
19.
Xia
,
W.
,
Wang
,
L.
, and
Yin
,
L.
,
2010
, “
Nonlinear Non-Classical Microscale Beams: Static Bending, Postbuckling and Free Vibration
,”
Int. J. Eng. Sci.
,
48
(
12
), pp.
2044
2053
.
20.
Zhao
,
J.
,
Zhou
,
S.
,
Wang
,
B.
, and
Wang
,
X.
,
2012
, “
Nonlinear Microbeam Model Based on Strain Gradient Theory
,”
Appl. Math. Model.
,
36
(
6
), pp.
2674
2686
.
21.
Şimşek
,
M.
,
2014
, “
Nonlinear Static and Free Vibration Analysis of Microbeams Based on the Nonlinear Elastic Foundation Using Modified Couple Stress Theory and He's Variational Method
,”
Compos. Struct.
,
112
, pp.
264
272
.
22.
Ansari
,
R.
,
Faghih Shojaei
,
M.
,
Gholami
,
R.
,
Mohammadi
,
V.
, and
Darabi
,
M. A.
,
2013
, “
Thermal Postbuckling Behavior of Size-Dependent Functionally Graded Timoshenko Microbeams
,”
Int. J. Non-Linear Mech.
,
50
, pp.
127
135
.
23.
Ke
,
L. L.
,
Yang
,
J.
,
Kitipornchai
,
S.
, and
Wang
,
Y. S.
,
2014
, “
Axisymmetric Postbuckling Analysis of Size-Dependent Functionally Graded Annular Microplates Using the Physical Neutral Plane
,”
Int. J. Eng. Sci.
,
81
, pp.
66
81
.
24.
Wang
,
Y. G.
,
Lin
,
W. H.
, and
Liu
,
N.
,
2015
, “
Nonlinear Bending and Post-Buckling of Extensible Microscale Beams Based on Modified Couple Stress Theory
,”
Appl. Math. Model.
,
39
, pp.
117
127
.
25.
Wang
,
B.
,
Zhou
,
S.
,
Zhao
,
J.
, and
Chen
,
X.
,
2011
, “
Size-Dependent Pull-In Instability of Electrostatically Actuated Microbeam-Based MEMS
,”
J. Micromech. Microeng.
,
21
(
2
), p.
027001
.
26.
Wang
,
B.
,
Zhou
,
S.
,
Zhao
,
J.
, and
Chen
,
X.
,
2011
, “
Pull-In Instability Analysis of Electrostatically Actuated Microplate With Rectangular Shape
,”
Int. J. Precis. Eng. Manuf.
,
12
(
6
), pp.
1085
1094
.
27.
Ansari
,
R.
,
Gholami
,
R.
,
Mohammadi
,
V.
, and
Faghih Shojaei
,
M.
,
2012
, “
Size-Dependent Pull-In Instability of Hydrostatically and Electrostatically Actuated Circular Microplates
,”
ASME Comput. Nonlinear Dyn.
,
8
(
2
), p.
021015
.
28.
Kong
,
S.
,
2013
, “
Size Effect on Pull-In Behavior of Electrostatically Actuated Microbeams Based on a Modified Couple Stress Theory
,”
Appl. Math. Model.
,
37
, pp.
7481
7488
.
29.
Papanicolopulos
,
S.
,
Zervos
,
A.
, and
Vardoulakis
,
I.
,
2009
, “
A Three-Dimensional C1 Finite Element for Gradient Elasticity
,”
Int. J. Numer. Method Eng.
,
77
(
10
), pp.
1396
1415
.
30.
Engel
,
G.
,
Garikipati
,
K.
,
Hughes
,
T.
,
Larson
,
M.
,
Mazzei
,
L.
, and
Taylor
,
R.
,
2002
, “
Continuous/Discontinuous Finite Element Approximations of Fourth-Order Elliptic Equations in Structural and Continuum Mechanics With Applications to Thin Beams and Plates, and Strain Gradient Elasticity
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
34
), pp.
3669
3750
.
31.
Zybell
,
L.
,
Muhlich
,
U.
,
Kuna
,
M.
, and
Zhang
,
Z.
,
2012
, “
A Three-Dimensional Finite Element for Gradient Elasticity Based on a Mixed-Type Formulation
,”
Comput. Mater. Sci.
,
52
(
1
), pp.
268
273
.
32.
Rudrarajua
,
S.
,
Van der Ven
,
A.
, and
Garikipatia
,
K.
,
2014
, “
Three-Dimensional Isogeometric Solutions to General Boundary Value Problems of Toupin's Gradient Elasticity Theory at Finite Strains
,”
Comput. Methods Appl. Mech. Eng.
,
278
, pp.
705
728
.
33.
Ansari
,
R.
,
Faghih Shojaei
,
M.
,
Mohammadi
,
V.
,
Bazdid-Vahdati
,
M.
, and
Rouhi
,
H.
,
2015
, “
Triangular Mindlin Microplate Element
,”
Comput. Methods Appl. Mech. Eng.
,
295
, pp.
56
76
.
34.
Mousavi
,
S. M.
,
Paavola
,
J.
, and
Reddy
,
J. N.
,
2015
, “
Variational Approach to Dynamic Analysis of Third-Order Shear Deformable Plates Within Gradient Elasticity
,”
Meccanica
,
50
(
6
), pp.
1537
1550
.
35.
Ansari
,
R.
,
Gholami
,
R.
,
Faghih Shojaei
,
M.
,
Mohammadi
,
V.
, and
Darabi
,
M. A.
,
2015
, “
Size-Dependent Nonlinear Bending and Postbuckling of Functionally Graded Mindlin Rectangular Microplates Considering the Physical Neutral Plane Position
,”
Compos. Struct.
,
127
, pp.
87
98
.
36.
Ramezani
,
S.
,
2012
, “
A Shear Deformation Micro-Plate Model Based on the Most General Form of Strain Gradient Elasticity
,”
Int. J. Mech. Sci.
,
57
(
1
), pp.
34
42
.
37.
Gao
,
X.-L.
, and
Park
,
S. K.
,
2007
, “
Variational Formulation of a Simplified Strain Gradient Elasticity Theory and Its Application to a Pressurized Thick-Walled Cylinder Problem
,”
Int. J. Solids Struct.
,
44
, pp.
7486
7499
.
38.
Zhang
,
D. G.
,
2014
, “
Nonlinear Bending Analysis of FGM Rectangular Plates With Various Supported Boundaries Resting on Two-Parameter Elastic Foundations
,”
Arch. Appl. Mech.
,
84
(
1
), pp.
1
20
.
You do not currently have access to this content.