A capacitive microelectromechanical system (MEMS) powered by a Hindmarsh–Rose (HR)-like electronic oscillator is considered not only for actuation purposes but also to mimic the action of a natural pacemaker and nerves on a cardiac assist device or artificial heart. It is found that the displacement/flexion of the MEMS undergoes bursting and spiking oscillations resulting from the transfer of the electronic signal, when one varies the damping coefficient and the applied DC current.
Issue Section:
Research Papers
References
1.
De Grave
, A.
, 2004
, “Conception intégrée des systèmes Microélectromécaniques
,” Thèse de doctorat, Génie industriel, Institut National Polytechnique de Grenoble, Grenoble, France, pp. 37
–47
.2.
Grayson Amy
, C. R.
, Shawge Rebecca
, S.
, Johnson Audrey
, M.
, Flynn Nolan
, T.
, Yawen
, L.
, Michael
, J. C.
, and Langer
, R.
, 2004
, “A BioMEMS Review: MEMS Technology for Physiologically Integrated Devices
,” Proc. IEEE
, 92
(1
), pp. 6
–21
.3.
Ouakad
, H. M.
, 2014
, “Static Response and Natural Frequencies of Microbeams Actuated by Out-of-Plane Electrostatic Fringing-Fields
,” Int. J. Non-Linear Mech.
, 63
, pp. 39
–48
.4.
Senturia
, S. D.
, 2001
, Microsystem Design
, Kluwer Academic Publishers
, Dordrecht, The Netherlands
, Chap. 6.5.
Elwenspoek
, M.
, and Wiegerink
, R.
, 2001
, Mechanical Microsensors
, Springer
, Berlin
.6.
Wang
, Y. C.
, Adams
, S. G.
, and Thorp
, J. S.
, 1998
, “Chaos in MEMS, Parameter Estimation and Its Potential Application
,” IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
, 45
(10
), pp. 1013
–1020
.7.
Luo
, A. C. J.
, and Wang
, F.
, 2002
, “Chaotic Motion in a Microelectromechanical System With Non-Linearity From Capacitors
,” Commun. Nonlinear Sci. Numer. Simul.
, 7
(1–2), pp. 31
–49
.8.
De
, S. K.
, and Aluru
, N. R.
, 2005
, “Complex Oscillations and Chaos in Electrostatic Microelectromechanical Systems Under Superharmonic Excitations
,” Phys. Rev. Lett.
, 94
(20
), p. 204101
.9.
Rhoads
, J. F.
, Shaw
, S. W.
, and Turner
, K. L.
, 2006
, “The Nonlinear Response of Resonant Microbeam Systems With Purely-Parametric Electrostatic Actuation
,” J. Micromech. Microeng.
, 16
(5
), pp. 890
–899
.10.
Kitio Kwuimy
, C. A.
, and Woafo
, P.
, 2010
, “Modeling and Dynamics of a Self-Sustained Electrostatic Microelectromechanical System
,” ASME J. Comput. Nonlinear Dyn.
, 5
(2
), p. 021010
.11.
Simo
, H.
, and Woafo
, P.
, 2011
, “Bursting Oscillations in Electromechanical Systems
,” Mech. Res. Commun.
, 38
(8
), pp. 537
–541
.12.
Younis
, M.
, 2011
, MEMS Linear and Nonlinear Statics and Dynamics
(Series on Microsystems), Vol. 20
, Springer
, Berlin
.13.
Yamapi
, R.
, and Woafo
, P.
, 2005
, “Dynamics and Synchronization of Coupled Self-Sustained Electromechanical Devices
,” J. Sound Vib.
, 285
(4–5), pp. 1151
–1170
.14.
Kitio Kwuimy
, C. A.
, and Woafo
, P.
, 2007
, “Dynamics of a Self-Sustained Electromechanical System With Flexible Arm and Cubic Coupling
,” Commun. Nonlinear Sci. Numer. Simul.
, 12
(8
), pp. 1504
–1517
.15.
Kitio Kwuimy
, C. A.
, and Woafo
, P.
, 2008
, “Dynamics, Chaos and Synchronization of Self-Sustained Electromechanical System With Clamped-Free Flexible Arm
,” Nonlinear Dyn.
, 53
(3
), pp. 201
–213
.16.
Hindmarsh
, J. L.
, and Rose
, R. M.
, 1984
, “A Model of Neuronal Bursting Using Three Coupled First Order Differential
,” Proc. R. Soc. London, Ser. B
, 221
(1222
), pp. 87
–102
.17.
Volos
, C. K.
, Kyprianidis
, I. M.
, Stouboulos
, I. N.
, Tlelo-Cuaulte
, E.
, and Vaidyanathan
, S.
, 2015
, “Memristor: A New Concept in Synchronization of Coupled Neuromorphic Circuits
,” J. Eng. Sci. Technol. Rev.
, 8
(2
), pp. 157
–173
.Copyright © 2016 by ASME
You do not currently have access to this content.