This work is devoted to the validation of a computational dynamics approach previously developed by the authors for the simulation of moving loads interacting with flexible bodies through arbitrary contact modeling. The method has been applied to the modeling and simulation of the coupled dynamics of railroad vehicles moving on deformable tracks with arbitrary undeformed geometry. The procedure presented makes use of a fully arbitrary Lagrangian–Eulerian (ALE) description of the long flexible solid (track) whose mechanical properties may be captured using a dynamics-preserving selection of modes, e.g., via a Padé approximation of a transfer function. The modes accompany the contact interaction rather than being referred to a fixed frame, as it occurs in the finite-element floating frame of reference formulation. In the method discussed in this paper, the mesh, which moves through the long flexible solid, is defined in the trajectory coordinate system (TCS) used to describe the dynamics of the set of bodies (vehicle) that interact with the long flexible structure. For this reason, the selection of modes can be focused on the preservation of the dynamics of the structure instead of having to ensure the structure's static displacement convergence due to the motion of the load. In this paper, the validation of the so-called trajectory coordinate system/moving modes (TCS/MM) method is performed in four different aspects: (a) the analytical mechanics approach is used to obtain the equations of motion in a nonmaterial volume, (b) the resulting equations of motion are compared to the classical discretization procedures of partial differential equations (PDE), (c) the suitability of the moving modes (MM) to describe deformation due to variable-velocity moving loads, and (d) the capability of the finite nonmaterial volume to describe the dynamics of an infinitely long flexible body. Validation (a) is completely general. However, the particular example of a moving load applied to a straight beam resting on a Winkler foundation, with known semi-analytical solution, is used to perform validations (b), (c), and (d).

References

1.
Shabana
,
A. A.
,
1997
, “
Flexible Multibody Dynamics: Review of Past and Recent Developments
,”
Multibody Syst. Dyn.
,
1
(
2
), pp.
189
222
.
2.
Gerstmayr
,
J.
,
Sugiyama
,
H.
, and
Mikkola
,
A.
,
2013
, “
Review on the Absolute Nodal Coordinate Formulation for Large Deformation Analysis of Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), p.
031016
.
3.
Kalker
,
J.
,
1982
, “
A Fast Algorithm for the Simplified Theory of Rolling Contact
,”
Veh. Syst. Dyn.
,
11
(
1
), pp.
1
13
.
4.
Grassie
,
S.
,
Gregory
,
R.
,
Harrison
,
D.
, and
Johnson
,
K.
,
1982
, “
The Dynamic Response of Railway Track to High Frequency Vertical Excitation
,”
J. Mech. Eng. Sci.
,
24
(
2
), pp.
77
90
.
5.
Galvín
,
P.
, and
Romero
,
A.
,
2013
, “
A 3D Time Domain Numerical Model Based on Half-Space Green's Function for Soil–Structure Interaction Analysis
,”
Comput. Mech.
,
53
(
5
), pp.
1073
1085
.
6.
Clouteau
,
D.
,
Cottereau
,
R.
, and
Lombaert
,
G.
,
2013
, “
Dynamics of Structures Coupled With Elastic Media—A Review of Numerical Models and Methods
,”
J. Sound Vib.
,
332
(
10
), pp.
2415
2436
.
7.
François
,
S.
,
Schevenels
,
M.
,
Galvín
,
P.
,
Lombaert
,
G.
, and
Degrande
,
G.
,
2010
, “
A 2.5D Coupled FE–BE Methodology for the Dynamic Interaction Between Longitudinally Invariant Structures and a Layered Halfspace
,”
Comput. Methods Appl. Mech. Eng.
,
199
, pp.
1536
1548
.
8.
Chamorro
,
R.
,
Escalona
,
J. L.
, and
González
,
M.
,
2011
, “
An Approach for Modeling Long Flexible Bodies With Application to Railroad Dynamics
,”
Multibody Syst. Dyn.
,
26
(
2
), pp.
135
152
.
9.
Pechstein
,
A.
, and
Gerstmayr
,
J.
,
2013
, “
A Lagrange–Eulerian Formulation for an Axially Moving Beam Based on the Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
30
(
3
), pp.
343
358
.
10.
Lehner
,
M.
, and
Eberhard
,
P.
,
2006
, “
On the Use of Moment-Matching to Build Reduced Order Models in Flexible Multibody Dynamics
,”
Multibody Syst. Dyn.
,
16
(
2
), pp.
191
211
.
11.
Fehr
,
J.
, and
Eberhard
,
P.
,
2011
, “
Simulation Process of Flexible Multibody Systems With Non-Modal Model Order Reduction Techniques
,”
Multibody Syst. Dyn.
,
25
(
3
), pp.
313
334
.
12.
Sherif
,
K.
,
Irschik
,
H.
, and
Witteveen
,
W.
,
2012
, “
Transformation of Arbitrary Elastic Mode Shapes Into Pseudo-Free-Surface and Rigid Body Modes for Multibody Dynamic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
2
), p.
021008
.
13.
Rieker
,
J. R.
,
Lin
,
Y.-H.
, and
Trethewey
,
M. W.
,
1996
, “
Discretization Considerations in Moving Load Finite Element Beam Models
,”
Finite Elem. Anal. Des.
,
21
(
3
), pp.
129
144
.
14.
Koh
,
C.
,
Ong
,
J.
,
Chua
,
D.
, and
Feng
,
J.
,
2003
, “
Moving Element Method for Train-Track Dynamics
,”
Int. J. Numer. Methods Eng.
,
56
(
11
), pp.
1549
1567
.
15.
Recuero
,
A. M.
, and
Escalona
,
J. L.
,
2013
, “
Application of the Trajectory Coordinate System and the Moving Modes Method Approach to Railroad Dynamics Using Krylov Subspaces
,”
J. Sound Vib.
,
332
(
20
), pp.
5177
5191
.
16.
Recuero
,
A. M.
, and
Escalona
,
J. L.
,
2014
, “
Dynamics of the Coupled Railway Vehicle–Flexible Track System With Irregularities Using a Multibody Approach With Moving Modes
,”
Veh. Syst. Dyn.
,
52
(
1
), pp.
45
67
.
17.
Tamarozzi
,
T.
,
Ziegler
,
P.
,
Eberhard
,
P.
, and
Desmet
,
W.
,
2013
, “
On the Applicability of Static Modes Switching in Gear Contact Applications
,”
Multibody Syst. Dyn.
,
30
(
2
), pp.
209
219
.
18.
Tamarozzi
,
T.
,
Heirman
,
G.
, and
Desmet
,
W.
,
2014
, “
An On-Line Time Dependent Parametric Model Order Reduction Scheme With Focus on Dynamic Stress Recovery
,”
Comput. Methods Appl. Mech. Eng.
,
268
, pp.
336
358
.
19.
Recuero
,
A. M.
,
2012
, “
Simulation of Coupled Railroad Vehicle–Flexible Track Dynamics Using Moving Modes and Krylov Subspace Techniques
,” Ph.D. thesis, University of Seville, Seville, Spain.
20.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
,
Cambridge University Press
,
Cambridge, UK
.
21.
Kawamoto
,
A.
,
Krenk
,
S.
,
Suzuki
,
A.
, and
Inagaki
,
M.
,
2010
, “
Flexible Body Dynamics in a Local Frame With Explicitly Predicted Motion
,”
Int. J. Numer. Methods Eng.
,
81
(
2
), pp.
246
268
.
22.
Chamorro
,
R.
,
Escalona
,
J. L.
, and
Recuero
,
A. M.
,
2014
, “
Stability Analysis of Multibody Systems With Long Flexible Bodies Using the Moving Modes Method and Its Application to Railroad Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
1
), p.
011005
.
23.
Recuero
,
A. M.
,
Aceituno
,
J.
,
Escalona
,
J.
, and
Shabana
,
A.
, “
A Nonlinear Approach for Modeling Rail Flexibility Using the Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
83
(
1
), pp.
463
481
.
24.
Hong
,
D.
, and
Ren
,
G.
,
2011
, “
A Modeling of Sliding Joint on One-Dimensional Flexible Medium
,”
Multibody Syst. Dyn.
,
26
(
1
), pp.
91
110
.
25.
Hyldahl
,
P.
,
Mikkola
,
A.
, and
Balling
,
O.
,
2013
, “
A Thin Plate Element Based on the Combined Arbitrary Lagrange–Euler and Absolute Nodal Coordinate Formulations
,”
Proc. Inst. Mech. Eng., Part K
,
227
(
3
), pp.
211
219
.
26.
Escalona
,
J. L.
,
2012
, “
Modeling Hoisting Machines With the Arbitrary Lagrangian–Eulerian Absolute Nodal Coordinate Formulation
,”
2nd International Conference on Multibody System Dynamics
, Stuttgart, Germany, May 29–June 1.
27.
Irschik
,
H.
, and
Holl
,
H.
,
2002
, “
The Equations of Lagrange Written for a Non-Material Volume
,”
Acta Mech.
,
153
(
3
), pp.
231
248
.
28.
Shabana
,
A. A.
,
Zaazaa
,
K. E.
, and
Sugiyama
,
H.
,
2008
,
Railroad Vehicle Dynamics. A Computational Approach
,
CRC Press
,
Boca Raton, FL
.
29.
Popp
,
K.
, and
Schiehlen
,
W.
,
2010
,
Ground Vehicle Dynamics
,
Springer-Verlag
,
Berlin
.
30.
Recuero
,
A. M.
,
Escalona
,
J. L.
, and
Chamorro
,
R.
,
2012
, “
A Trajectory Frame-Based Dynamic Formulation for Railroad Vehicles Simulation
,”
Int. J. Railw. Technol.
,
1
(
2
), pp.
21
44
.
31.
Donea
,
J.
,
Huerta
,
A.
,
Ponthot
,
J.-P.
,
Rodríguez-Ferran
,
A.
,
2004
, “
Arbitrary Lagrangian–Eulerian Methods
,”
Encyclopedia of Computational Mechanics, Volume 1: Fundamentals
,
Wiley
, Chichester, UK, pp.
1
25
.
32.
Schilders
,
W. H.
,
van der Vorst
,
H. A.
, and
Rommes
,
J.
, eds.,
2008
,
Model Order Reduction: Theory, Research Aspects and Applications
,
Springer-Verlag
,
Berlin
.
33.
Feldmann
,
P.
, and
Freund
,
R.
,
1995
, “
Efficient Linear Circuit Analysis by Padé Approximation Via the Lanczos Process
,”
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
,
14
(
5
), pp.
639
649
.
34.
Koutsovasilis
,
P.
, and
Beitelschmidt
,
M.
,
2008
, “
Comparison of Model Reduction Techniques for Large Mechanical Systems
,”
Multibody Syst. Dyn.
,
20
(
2
), pp.
111
128
.
35.
Liang
,
Y.
,
Lee
,
H.
,
Lim
,
S.
,
Lin
,
W.
,
Lee
,
K.
, and
Wu
,
C.
,
2002
, “
Proper Orthogonal Decomposition and Its Applications—Part I: Theory
,”
J. Sound Vib.
,
252
(
3
), pp.
527
544
.
36.
Goldstein
,
H.
,
Poole
,
C.
, and
Safko
,
J.
,
2001
,
Classical Mechanics
, 3rd ed.,
Addison-Wesley
, New York.
37.
Giménez
,
G.
,
1978
, “
Cálculo y Optimización del Comportamiento Dinámico de Vehículos Ferroviarios
,” Ph.D. thesis, Universidad de Navarra, Navarra, Spain.
38.
Mallik
,
C. S.
, and
Singh
,
A. K.
,
2006
, “
Steady-State Response of an Elastically Supported Infinite Beam to a Moving Load
,”
J. Sound Vib.
,
291
, pp.
1148
1169
.
39.
Shabana
,
A.
,
1997
,
Vibration of Discrete and Continuous Systems
,
Springer
,
New York
.
40.
Frýba
,
L.
,
1999
,
Vibration of Solids and Structures Under Moving Loads
, 3rd ed.,
Thomas Telford Ltd.
,
Prague, Czech Republic
.
41.
Vostroukhov
,
A.
, and
Metrikine
,
A.
,
2003
, “
Periodically Supported Beam on a Visco-Elastic Layer as a Model for Dynamic Analysis of a High-Speed Railway Track
,”
Int. J. Solids Struct.
,
40
(
21
), pp.
5723
5752
.
You do not currently have access to this content.