In this paper, the mineral wool fiberization process on a spinner wheel was studied by means of the nonlinear time series analysis. Melt film velocity time series was calculated using computer-aided visualization of the process images recorded with a high speed camera. The time series was used to reconstruct the state space of the process and was tested for stationarity, determinism, chaos, and recurrent properties. Mineral wool fiberization was determined to be a low-dimensional and nonstationary process. The 0–1 chaos test results suggest that the process is chaotic, while the determinism test indicates weak determinism.
Issue Section:
Research Papers
References
1.
Taylor
, G. I.
, 1950
, “The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes
,” Proc. R. Soc. London, Ser. A
, 201
(1065
), pp. 192
–196
.10.1098/rspa.1950.00522.
Eisenklam
, P.
, 1964
, “On Ligament Formation From Spinning Discs and Cups
,” Chem. Eng. Sci.
, 19
(9
), pp. 693
–694
.10.1016/0009-2509(64)85056-93.
Hinze
, J. O.
, and Milborn
, H.
, 1950
, “Atomization of Liquids by Means of a Rotating Cup
,” J. Appl. Mech.
, 17
(2
), pp. 145
–153
.4.
Kamiya
, T.
, 1972
, “Analysis of the Ligament-Type Disintegration of Thin Liquid Film at the Edge of Rotating Disk
,” J. Chem. Eng. Jpn.
, 5
(4
), pp. 391
–396
.10.1252/jcej.5.3915.
Liu
, J.
, Yu
, Q.
, and Guo
, Q.
, 2012
, “Experimental Investigation of Liquid Disintegration by Rotary Cups
,” Chem. Eng. Sci.
, 73
, pp. 44
–50
.10.1016/j.ces.2012.01.0106.
Westerlund
, T.
, and Hoikka
, T.
, 1989
, “On the Modeling of Mineral Fiber Formation
,” Comput. Chem. Eng.
, 13
(10
), pp. 1153
–1163
.10.1016/0098-1354(89)87018-87.
Blagojević
B.
, Širok
, B.
, and Štremfelj
, B.
, 2004
, “Simulation of the Effect of Melt Composition on Mineral Wool Fibre Thickness
,” Ceramics - Silikáty
, 48
(3
), pp. 128
–134
.8.
Širok
, B.
Blagojević
, B.
, and Bullen
, P.
, 2008
, Mineral Wool: Production and Properties
, Woodhead Publishing Limited
, Cambridge, UK
.9.
Širok
, B.
, Bizjan
, B.
, Orbanić
, A.
, and Bajcar
, T.
, 2014
, “Mineral Wool Melt Fiberization on a Spinner Wheel
,” Chem. Eng. Res. Des.
, 92
(1
), pp. 80
–90
.10.1016/j.cherd.2013.06.01410.
Kantz
, H.
, and Schreiber
, T.
, 2004
, Nonlinear Time Series Analysis;
Cambridge University Press
, Cambridge, UK
.11.
Bajcar
, T.
, Širok
, B.
, and Eberlinc
, M.
, 2009
, “Quantification of Flow Kinematics Using Computer-Aided Visualization
,” J. Mech. Eng.
, 55
(4
), pp. 215
–223
.12.
Brady
, B. J.
, 1995
, Mineral Physics & Crystallography: A Handbook of Physical Constants
, American Geophysical Union
, Washington, D.C
.13.
Horn
, B. K. R.
, and Schunck
, B. G.
, 1981
, “Determining Optical Flow
,” Artificial Intelligence
, 17
(1–3
), pp. 185
–204
.10.1016/0004-3702(81)90024-214.
Takens
, F.
, 1981
, “Detecting Strange Attractors in Turbulence
,” Lecture Notes in Mathematics
, 898
, pp. 366
–381
.10.1007/BFb009190315.
Sauer
, T.
, Yorke
, J.
, and Casdagli
, M.
, 1991
, “Embedology
,” J. Stat. Phys.
, 65
(3
), pp. 579
–616
.10.1007/BF0105374516.
Fraser
, A. M.
, and Swinney
, H. L.
, 1986
, “Independent Coordinates for Strange Attractors From Mutual Information
,” Phys. Rev. A
, 22
(2
), pp. 1134
–1140
.10.1103/PhysRevA.33.113417.
Abarbanel
, H. D. I.
, 1996
, Analysis of Observed Chaotic Data
, Springer-Verlag
, New York
.18.
Kennel
, M. B.
, Brown
, R.
, and Abarbanel
, H. D. I.
, 1992
, “Determining Embedding Dimension for Phase-Space Reconstruction Using a Geometrical Construction
,” Phys. Rev. A
, 45
(6
), pp. 3403
–3411
.10.1103/PhysRevA.45.340319.
Schreiber
, T.
, 1997
, “Detecting and Analyzing Nonstationarity in a Time Series Using Nonlinear Cross Predictions
,” Phys. Rev. Lett.
, 78
(5
), pp. 843
–846
.10.1103/PhysRevLett.78.84320.
Kaplan
, D. T.
, and Glass
, L.
, 1992
, “Direct Test for Determinism in a Time Series
,” Phys. Rev. Lett.
, 68
(4
), pp. 427
–430
.10.1103/PhysRevLett.68.42721.
Krese
, B.
, Perc
, M.
, and Govekar
, E.
, 2010
, “The Dynamics of Laser Droplet Generation
,” Chaos
, 20
(1
), p. 013129
.10.1063/1.336777222.
Bradley
, E.
, and Mantilla
, R.
, 2002
, “Recurrence Plots and Unstable Periodic Orbits
,” Chaos
, 12
(3
), pp. 596
–600
.10.1063/1.148825523.
Krese
, B.
, and Govekar
, E.
, 2011
, “Recurrence Quantification Analysis of Intermittent Spontaneous to Forced Dripping Transition in Laser Droplet Generation
,” Chaos
, 44
(5
), pp. 298
–305
.24.
Marwan
, N.
, Romano
, M. C.
, Thiel
, M.
, and Kurths
, J.
, 2007
, “Recurrence Plots for the Analysis of Complex Systems
,” Phys. Rep.
, 438
(5
), pp. 237
–329
.10.1016/j.physrep.2006.11.00125.
Zbilut
, J. P.
, Zaldivar-Comenges
, J.-M.
, and Strozzi
, F.
, 2002
, “Recurrence Quantification Based Lyapunov Exponents for Monitoring Divergence in Experimental Data
,” Phys. Lett. A
, 297
(3–4
), pp. 173
–181
.10.1016/S0375-9601(02)00436-X26.
Gottwald
, G. A.
, and Melbourne
, I.
, 2004
, “A New Test for Chaos in Deterministic Systems
,” Proc. R. Soc. London, Ser. A
, 460
(2042
), pp. 603
–611
.10.1098/rspa.2003.118327.
Gottwald
, G. A.
, and Melbourne
, I.
, 2009
, “On the Implementation of the 0–1 Test for Chaos
,” SIAM J. Appl. Dyn. Syst.
, 8
(1
), pp. 129
–145
.10.1137/08071885128.
Krese
, B.
, and Govekar
, E.
, 2012
, “Nonlinear Analysis of Laser Droplet Generation by Means of 0–1 Test for Chaos
,” Nonlinear Dyn.
, 67
(3
), pp. 2101
–2109
.10.1007/s11071-011-0132-1Copyright © 2015 by ASME
You do not currently have access to this content.