Abstract

Individuals with transtibial amputation (TTA) experience asymmetric lower-limb loading which can lead to joint pain and injuries. However, it is unclear how walking over unexpected uneven terrain affects their loading patterns. This study sought to use modeling and simulation to determine how peak joint contact forces and impulses change for individuals with unilateral TTA during an uneven step and subsequent recovery step and how those patterns compare to able-bodied individuals. We expected residual limb loading during the uneven step and intact limb loading during the recovery step would increase relative to flush walking. Further, individuals with TTA would experience larger loading increases compared to able-bodied individuals. Simulations of individuals with TTA showed during the uneven step, changes in joint loading occurred at all joints except the prosthetic ankle relative to flush walking. During the recovery step, intact limb joint loading increased in early stance relative to flush walking. Simulations of able-bodied individuals showed large increases in ankle joint loading for both surface conditions. Overall, increases in early stance knee joint loading were larger for those with TTA compared to able-bodied individuals during both steps. These results suggest that individuals with TTA experience altered joint loading patterns when stepping on uneven terrain. Future work should investigate whether an adapting ankle-foot prosthesis can mitigate these changes to reduce injury risk.

References

1.
Li
,
W.
,
Keegan
,
T. H. M.
,
Sternfeld
,
B.
,
Sidney
,
S.
,
Quesenberry
,
C. P.
, and
Kelsey
,
J. L.
,
2006
, “
Outdoor Falls Among Middle-Aged and Older Adults: A Neglected Public Health Problem
,”
Am. J. Public Health
,
96
(
7
), pp.
1192
1200
.10.2105/AJPH.2005.083055
2.
Steinberg
,
N.
,
Gottlieb
,
A.
,
Siev-Ner
,
I.
, and
Plotnik
,
M.
,
2019
, “
Fall Incidence and Associated Risk Factors Among People With a Lower Limb Amputation During Various Stages of Recovery–a Systematic Review
,”
Disabil. Rehabil.
,
41
(
15
), pp.
1778
1787
.10.1080/09638288.2018.1449258
3.
Segal
,
A. D.
,
Yeates
,
K. H.
,
Neptune
,
R. R.
, and
Klute
,
G. K.
,
2018
, “
Foot and Ankle Joint Biomechanical Adaptations to an Unpredictable Coronally Uneven Surface
,”
ASME J. Biomech. Eng.
,
140
(
3
), p.
031004
.10.1115/1.4037563
4.
MacKinnon
,
C. D.
, and
Winter
,
D. A.
,
1993
, “
Control of Whole Body Balance in the Frontal Plane During Human Walking
,”
J. Biomech.
,
26
(
6
), pp.
633
644
.10.1016/0021-9290(93)90027-C
5.
Hof
,
A. L.
,
van Bockel
,
R. M.
,
Schoppen
,
T.
, and
Postema
,
K.
,
2007
, “
Control of Lateral Balance in Walking. Experimental Findings in Normal Subjects and Above-Knee Amputees
,”
Gait Posture
,
25
(
2
), pp.
250
258
.10.1016/j.gaitpost.2006.04.013
6.
Brough
,
L. G.
,
Klute
,
G. K.
, and
Neptune
,
R. R.
,
2021
, “
Biomechanical Response to Mediolateral Foot-Placement Perturbations During Walking
,”
J. Biomech.
,
116
, p.
110213
.10.1016/j.jbiomech.2020.110213
7.
Yeates
,
K. H.
,
Segal
,
A. D.
,
Neptune
,
R. R.
, and
Klute
,
G. K.
,
2016
, “
Balance and Recovery on Coronally-Uneven and Unpredictable Terrain
,”
J. Biomech.
,
49
(
13
), pp.
2734
2740
.10.1016/j.jbiomech.2016.06.014
8.
Miller
,
S. E.
,
Segal
,
A. D.
,
Klute
,
G. K.
, and
Neptune
,
R. R.
,
2018
, “
Hip Recovery Strategy Used by Below-Knee Amputees Following Mediolateral Foot Perturbations
,”
J. Biomech.
,
76
, pp.
61
67
.10.1016/j.jbiomech.2018.05.023
9.
Cyr
,
K. M.
,
Segal
,
A. D.
,
Neptune
,
R. R.
, and
Klute
,
G. K.
,
2023
, “
Biomechanical Responses of Individuals With Transtibial Amputation Stepping on a Coronally Uneven and Unpredictable Surface
,”
J. Biomech.
,
155
, p.
111622
.10.1016/j.jbiomech.2023.111622
10.
Silverman
,
A. K.
, and
Neptune
,
R. R.
,
2011
, “
Differences in Whole-Body Angular Momentum Between Below-Knee Amputees and Non-Amputees Across Walking Speeds
,”
J. Biomech.
,
44
(
3
), pp.
379
385
.10.1016/j.jbiomech.2010.10.027
11.
Sheehan
,
R. C.
,
Beltran
,
E. J.
,
Dingwell
,
J. B.
, and
Wilken
,
J. M.
,
2015
, “
Mediolateral Angular Momentum Changes in Persons With Amputation During Perturbed Walking
,”
Gait Posture
,
41
(
3
), pp.
795
800
.10.1016/j.gaitpost.2015.02.008
12.
Neptune
,
R. R.
, and
Vistamehr
,
A.
,
2019
, “
Dynamic Balance During Human Movement: Measurement and Control Mechanisms
,”
ASME J. Biomech. Eng.
,
141
(
7
), p.
070801
.10.1115/1.4042170
13.
Yeates
,
K. H.
,
Segal
,
A. D.
,
Neptune
,
R. R.
, and
Klute
,
G. K.
,
2018
, “
A Coronally Clutching Ankle to Improve Amputee Balance on Coronally Uneven and Unpredictable Terrain
,”
ASME J. Med. Devices
,
12
(
3
), p.
031001
.10.1115/1.4040183
14.
Gates
,
D. H.
,
Dingwell
,
J. B.
,
Scott
,
S. J.
,
Sinitski
,
E. H.
, and
Wilken
,
J. M.
,
2012
, “
Gait Characteristics of Individuals With Transtibial Amputations Walking on a Destabilizing Rock Surface
,”
Gait Posture
,
36
(
1
), pp.
33
39
.10.1016/j.gaitpost.2011.12.019
15.
Koelewijn
,
A. D.
, and
van den Bogert
,
A. J.
,
2016
, “
Joint Contact Forces Can Be Reduced by Improving Joint Moment Symmetry in Below-Knee Amputee Gait Simulations
,”
Gait Posture
,
49
, pp.
219
225
.10.1016/j.gaitpost.2016.07.007
16.
Miller
,
R. H.
,
Krupenevich
,
R. L.
,
Pruziner
,
A. L.
,
Wolf
,
E. J.
, and
Schnall
,
B. L.
,
2017
, “
Medial Knee Joint Contact Force in the Intact Limb During Walking in Recently Ambulatory Service Members With Unilateral Limb Loss: A Cross-Sectional Study
,”
PeerJ
,
5
(
2
), p.
e2960
.10.7717/peerj.2960
17.
Silverman
,
A. K.
, and
Neptune
,
R. R.
,
2014
, “
Three-Dimensional Knee Joint Contact Forces During Walking in Unilateral Transtibial Amputees
,”
J. Biomech.
,
47
(
11
), pp.
2556
2562
.10.1016/j.jbiomech.2014.06.006
18.
Maly
,
M. R.
,
2009
, “
Linking Biomechanics to Mobility and Disability in People With Knee Osteoarthritis
,”
Exerc. Sport Sci. Rev.
,
37
(
1
), pp.
36
42
.10.1097/JES.0b013e3181912071
19.
Foroughi
,
N.
,
Smith
,
R.
, and
Vanwanseele
,
B.
,
2009
, “
The Association of External Knee Adduction Moment With Biomechanical Variables in Osteoarthritis: A Systematic Review
,”
Knee
,
16
(
5
), pp.
303
309
.10.1016/j.knee.2008.12.007
20.
Burke
,
M. J.
,
Roman
,
V.
, and
Wright
,
V.
,
1978
, “
Bone and Joint Changes in Lower Limb Amputees
,”
Ann. Rheum. Dis.
,
37
(
3
), pp.
252
254
.10.1136/ard.37.3.252
21.
Norvell
,
D. C.
,
Czerniecki
,
J. M.
,
Reiber
,
G. E.
,
Maynard
,
C.
,
Pecoraro
,
J. A.
, and
Weiss
,
N. S.
,
2005
, “
The Prevalence of Knee Pain and Symptomatic Knee Osteoarthritis Among Veteran Traumatic Amputees and Nonamputees
,”
Arch. Phys. Med. Rehabil.
,
86
(
3
), pp.
487
493
.10.1016/j.apmr.2004.04.034
22.
Struyf
,
P. A.
,
van Heugten
,
C. M.
,
Hitters
,
M. W.
, and
Smeets
,
R. J.
,
2009
, “
The Prevalence of Osteoarthritis of the Intact Hip and Knee Among Traumatic Leg Amputees
,”
Arch. Phys. Med. Rehabil.
,
90
(
3
), pp.
440
446
.10.1016/j.apmr.2008.08.220
23.
Morgenroth
,
D. C.
,
Gellhorn
,
A. C.
, and
Suri
,
P.
,
2012
, “
Osteoarthritis in the Disabled Population: A Mechanical Perspective
,”
PM R
,
4
(
5S
), pp. S20–S27.10.1016/j.pmrj.2012.01.003
24.
Kutzner
,
I.
,
Heinlein
,
B.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
,
Halder
,
A.
,
Beier
,
A.
, and
Bergmann
,
G.
,
2010
, “
Loading of the Knee Joint During Activities of Daily Living Measured In Vivo in Five Subjects
,”
J. Biomech.
,
43
(
11
), pp.
2164
2173
.10.1016/j.jbiomech.2010.03.046
25.
D'Lima
,
D. D.
,
Patil
,
S.
,
Steklov
,
N.
,
Slamin
,
J. E.
, and
Colwell
,
C. W.
, Jr
,
2005
, “
In Vivo Knee Forces After Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
440
(
&NA
), pp.
45
49
.10.1097/01.blo.0000186559.62942.8c
26.
Taylor
,
S. J. G.
,
Walker
,
R. S.
,
Perry
,
J. S.
,
Cannon
,
S. R.
, and
Woledge
,
R.
,
1998
, “
The Forces in the Distal Femur and the Knee During Walking and Other Activities Measured by Telemetry
,”
J. Arthroplasty
,
13
(
4
), pp.
428
437
.10.1016/S0883-5403(98)90009-2
27.
Mündermann
,
A.
,
Dyrby
,
C. O.
,
D'Lima
,
D. D.
,
Colwell
,
C. W.
, Jr.
, and
Andriacchi
,
T. P.
,
2008
, “
In Vivo Knee Loading Characteristics During Activities of Daily Living as Measured by an Instrumented Total Knee Replacement
,”
J. Orthop. Res.
,
26
(
9
), pp.
1167
1172
.10.1002/jor.20655
28.
Pruziner
,
A. L.
,
Werner
,
K. M.
,
Copple
,
T. J.
,
Hendershot
,
B. D.
, and
Wolf
,
E. J.
,
2014
, “
Does Intact Limb Loading Differ in Servicemembers With Traumatic Lower Limb Loss?
,”
Clin. Orthop. Relat. Res.
,
472
(
10
), pp.
3068
3075
.10.1007/s11999-014-3663-1
29.
Fey
,
N. P.
, and
Neptune
,
R. R.
,
2012
, “
3D Intersegmental Knee Loading in Below-Knee Amputees Across Steady-State Walking Speeds
,”
Clin. Biomech.
,
27
(
4
), pp.
409
414
.10.1016/j.clinbiomech.2011.10.017
30.
Doyle
,
S. S.
,
Lemaire
,
E. D.
,
Nantel
,
J.
, and
Sinitski
,
E. H.
,
2019
, “
The Effect of Surface Inclination and Limb on Knee Loading Measures in Transtibial Prosthesis Users
,”
J. Neuroeng. Rehabil.
,
16
(
1
), pp.
1
8
.10.1186/s12984-019-0509-9
31.
Miyazaki
,
T.
,
Wada
,
M.
,
Kawahara
,
H.
, and
Sato
,
M.
,
2002
, “
Dynamic Load at Baseline Can Predict Radiographic Disease Progression in Medial Compartment Knee Osteoarthritis
,”
Ann. Rheum. Dis.
,
61
(
7
), pp.
617
622
.10.1136/ard.61.7.617
32.
Kutzner
,
I.
,
Trepczynski
,
A.
,
Heller
,
M. O.
, and
Bergmann
,
G.
,
2013
, “
Knee Adduction Moment and Medial Contact Force-Facts About Their Correlation During Gait
,”
PLoS One
,
8
(
12
), p.
e81036
.10.1371/journal.pone.0081036
33.
Walter
,
J. P.
,
D'Lima
,
D. D.
,
Colwell
,
C. W.
, Jr
,., and
Fregly
,
B. J.
,
2010
, “
Decreased Knee Adduction Moment Does Not Guarantee Decreased Medial Contact Force During Gait
,”
J. Orthop. Res.
,
28
(
10
), pp.
1348
1354
.10.1002/jor.21142
34.
Shelburne
,
K. B.
,
Torry
,
M. R.
, and
Pandy
,
M. G.
,
2006
, “
Contributions of Muscles, Ligaments, and the Ground-Reaction Force to Tibiofemoral Joint Loading During Normal Gait
,”
J. Orthop. Res.
,
24
(
10
), pp.
1983
1990
.10.1002/jor.20255
35.
Sasaki
,
K.
, and
Neptune
,
R. R.
,
2010
, “
Individual Muscle Contributions to the Axial Knee Joint Contact Force During Normal Walking
,”
J. Biomech.
,
43
(
14
), pp.
2780
2784
.10.1016/j.jbiomech.2010.06.011
36.
Stewart
,
K. M.
,
Klute
,
G.
, and
Neptune
,
R. R.
,
2023
, “
Simulated Able-Bodied Lower-Limb Joint Loading While Walking on Unexpected Uneven Terrain
,” TechRxiv.10.36227/techrxiv.24592845.v1
37.
Sangeux
,
M.
, and
Polak
,
J.
,
2015
, “
A Simple Method to Choose the Most Representative Stride and Detect Outliers
,”
Gait Posture
,
41
(
2
), pp.
726
730
.10.1016/j.gaitpost.2014.12.004
38.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.10.1109/TBME.2007.901024
39.
LaPrè
,
A. K.
,
Price
,
M. A.
,
Wedge
,
R. D.
,
Umberger
,
B. R.
, and
Sup
,
F. C.
,
2018
, “
Approach for Gait Analysis in Persons With Limb Loss Including Residuum and Prosthesis Socket Dynamics
,”
Int. J. Numer. Method Biomed. Eng.
,
34
(
4
), p. e2936.10.1002/cnm.2936
40.
Thelen
,
D. G.
, and
Anderson
,
F. C.
,
2006
, “
Using Computed Muscle Control to Generate Forward Dynamic Simulations of Human Walking From Experimental Data
,”
J. Biomech.
,
39
(
6
), pp.
1107
1115
.10.1016/j.jbiomech.2005.02.010
41.
Barrios
,
J.
, and
Willson
,
J.
,
2017
, “
Minimum Detectable Change in Medial Tibiofemoral Contact Force Parameters: Derivation and Application to a Load-Altering Intervention
,”
J. Appl. Biomech.
,
33
(
2
), pp.
171
175
.10.1123/jab.2016-0163
42.
Paysant
,
J.
,
Beyaert
,
C.
,
Dati
,
A.-M.
,
Martinet
,
N.
, and
Andr
,
J.-M.
,
2006
, “
Influence of Terrain on Metabolic and Temporal Gait Characteristics of Unilateral Transtibial Amputees
,”
J. Rehabil. Res. Dev.
,
43
(
2
), pp.
153
160
.10.1682/JRRD.2005.02.0043
43.
Kent
,
J. A.
,
Takahashi
,
K. Z.
, and
Stergiou
,
N.
,
2019
, “
Uneven Terrain Exacerbates the Deficits of a Passive Prosthesis in the Regulation of Whole Body Angular Momentum in Individuals With a Unilateral Transtibial Amputation
,”
J. Neuroeng. Rehabil.
,
16
(
1
), pp.
1
10
.10.1186/s12984-019-0497-9
44.
Moisan
,
G.
,
Miramand
,
L.
,
Younesian
,
H.
,
Legrand
,
T.
, and
Turcot
,
K.
,
2021
, “
Assessment of Biomechanical Deficits in Individuals With a Trans-Tibial Amputation During Level Gait Using One-Dimensional Statistical Parametric Mapping
,”
Gait Posture
,
87
, pp.
130
135
.10.1016/j.gaitpost.2021.04.033
45.
Nolan
,
L.
, and
Lees
,
A.
,
2000
, “
The Functional Demands on the Intact Limb During Walking for Active Trans-Femoral and Trans-Tibial Amputees
,”
Prosthet. Orthot. Int.
,
24
(
2
), pp.
117
125
.10.1080/03093640008726534
46.
Roelker
,
S. A.
,
Caruthers
,
E. J.
,
Hall
,
R. K.
,
Pelz
,
N. C.
,
Chaudhari
,
A. M. W.
, and
Siston
,
R. A.
,
2020
, “
Effects of Optimization Technique on Simulated Activations and Forces
,”
J. Appl. Biomech.
,
36
(
4
), pp.
259
278
.10.1123/jab.2018-0332
47.
Correa
,
T. A.
,
Crossley
,
K. M.
,
Kim
,
H. J.
, and
Pandy
,
M. G.
,
2010
, “
Contributions of Individual Muscles to Hip Joint Contact Force in Normal Walking
,”
J. Biomech.
,
43
(
8
), pp.
1618
1622
.10.1016/j.jbiomech.2010.02.008
48.
Giarmatzis
,
G.
,
Jonkers
,
I.
,
Wesseling
,
M.
,
Van Rossom
,
S.
, and
Verschueren
,
S.
,
2015
, “
Loading of Hip Measured by Hip Contact Forces at Different Speeds of Walking and Running
,”
JBMR
,
30
(
8
), pp.
1431
1440
.10.1002/jbmr.2483
You do not currently have access to this content.