Abstract

Behind armor blunt trauma (BABT), resulting from dynamic deformation of protective ballistic armor into the thorax, is currently assessed assuming a constant threshold of maximum backface deformation (BFDs) (44 mm). Although assessed for multiple impacts on the same armor, testing is focused on armor performance (shot-to-edge and shot-to-shot) without consideration of the underlying location on the thorax. Previous studies identified the importance of impacts on organs of animal surrogates wearing soft armor. However, the effect of impact location was not quantified outside the threshold of 44 mm. In the present study, a validated biofidelic advanced human thorax model (50th percentile male) was utilized to assess the BABT outcome from varying impact location. The thorax model was dynamically loaded using a method developed for recreating BABT impacts, and BABT events within the range of real-world impact severities and locations were simulated. It was found that thorax injury depended on impact location for the same BFDs. Generally, impacts over high compliance locations (anterolateral rib cage) yielded increased thoracic compression and loading on the lungs leading to pulmonary lung contusion (PLC). Impacts at low compliance locations (top of sternum) yielded hard tissue fractures. Injuries to the sternum, ribs, and lungs were predicted at BFDs lower than 44 mm for low compliance locations. Location-based injury risk curves demonstrated greater accuracy in injury prediction. This study quantifies the importance of impact location on BABT injury severity and demonstrates the need for consideration of location in future armor design and assessment.

References

1.
Prather
,
R. N.
,
Swann
,
C. L.
, and
Hawkins
,
C. E.
,
1977
, “Backface Signatures of Soft Body Armors and the Associated Trauma Effects,” Army Armament Research and Development Command Aberdeen Proving Ground MD Chemical Systems Lab, Fort Belvoir, VA, Report No.
ADA049463
.https://apps.dtic.mil/sti/citations/ADA049463
2.
National Institute of Justice
,
2008
, “
Ballistic Resistance of Body Armor
,” National Institute of Justice, Rockville, MD, Standard No.
0101.06
.https://www.ojp.gov/pdffiles1/nij/223054.pdf
3.
Carroll
,
A. W.
, and
Soderstrom
,
C. A.
,
1978
, “
A New Nonpenetrating Ballistic Injury
,”
Ann. Surg.
,
188
(
6
), pp.
753
757
.10.1097/00000658-197812000-00007
4.
Cronin
,
D. S.
,
Bustamante
,
M. C.
,
Barker
,
J.
,
Singh
,
D.
,
Rafaels
,
K. A.
, and
Bir
,
C.
,
2021
, “
Assessment of Thorax Finite Element Model Response for Behind Armor Blunt Trauma Impact Loading Using an Epidemiological Database
,”
ASME J. Biomech. Eng.
,
143
(
3
), p.
031007
.10.1115/1.4048644
5.
Goldfarb
,
M. A.
,
Ciurej
,
T. F.
,
Weinstein
,
M. A.
,
Metker
,
L. W.
, and
Ground
,
E. A. A.
,
1975
, “
A Method for Soft Body Armor Evaluation: Medical Assessment
,” Edgewood Arsenal Aberdeen Proving Ground MD, Fort Belvoir, VA, Report No.
ADA005575
.https://apps.dtic.mil/sti/citations/ADA005575
6.
Wilhelm
,
M.
, and
Bir
,
C.
,
2008
, “
Injuries to Law Enforcement Officers: The Backface Signature Injury
,”
Forensic Sci. Int.
,
174
(
1
), pp.
6
11
.10.1016/j.forsciint.2007.02.028
7.
Rafaels
,
K. A.
,
Loftis
,
K. L.
, and
Bir
,
C. A.
,
2018
, “
Can Clay Tell Us More Than Deformation?
,”
Proceedings of the Personal Armour Systems Symposium 2018
, Personal Armour Systems Symposium, Washington, DC, Oct. 1–5, p.
8
.
8.
Cronin
,
D. S.
,
2006
, “
Detailed Thoracic Model to Investigate Behind Armour Blunt Trauma
,”
Proceedings of the Personal Armour Systems Symposium, Personal Armour Systems Symposium,
Leeds, UK, Sept. 18–22, pp.
1
10
.
9.
Montanarelli
,
N.
,
Hawkins
,
C. E.
,
Goldfarb
,
M. A.
, and
Ciurej
,
T. F.
,
1973
, “Protective Garments for Public Officials,” Army Land Warfare Lab Aberdeen Proving Ground MD, Fort Belvoir, VA, Report No.
ADA089163
.https://apps.dtic.mil/sti/citations/ADA089163
10.
Clare
,
V. R.
,
Lewis
,
J. H.
,
Mickiewicz
,
A. P.
, and
Sturdivan
,
L. M.
,
1976
, “
Body Armor: Blunt Trauma Data
,” National Institute of Law Enforcement and Criminal Justice, Rockville, MD, Report No.
32266
.https://www.ojp.gov/ncjrs/virtuallibrary/abstracts/body-armor-blunt-trauma-data
11.
Carr
,
D. J.
,
Horsfall
,
I.
, and
Malbon
,
C.
,
2016
, “
Is Behind Armour Blunt Trauma a Real Threat to Users of Body Armour? A Systematic Review
,”
J. R. Army Med. Corps
,
162
(
1
), pp.
8
11
.10.1136/jramc-2013-000161
12.
Jennings
,
R. M.
,
Malbon
,
C.
,
Brock
,
F.
,
Harrisson
,
S.
, and
Carr
,
D. J.
,
2018
, “
A Preliminary Study into Injuries Due to Non-Perforating Ballistic Impacts into Soft Body Armour Over the Spine
,”
Injury
,
49
(
7
), pp.
1251
1257
.10.1016/j.injury.2018.05.015
13.
Bir
,
C.
,
Lance
,
R.
,
Stojsih-Sherman
,
S.
, and
Cavanaugh
,
J.
,
2017
, “
Behind Armor Blunt Trauma: Recreation of Field Cases for the Assessment of Backface Signature Testing
,”
30th International Symposium on Ballistics
, Long Beach, CA, Sept. 11–15, pp.
1264
1275
.10.12783/ballistics2017/16912
14.
McMullen
,
M. J.
, and
Williams
,
C. J.
,
2008
, “
Injuries to Law Enforcement Officers Shot Wearing Personal Body Armor: A 30-Year Review
,”
Police Chief
,
2
(
8
), pp.
20
22
.https://www.ojp.gov/ncjrs/virtuallibrary/abstracts/injuries-law-enforcement-officers-shot-wearing-personal-body-armor
15.
Roberts
,
J. C.
,
O'Connor
,
J. V.
, and
Ward
,
E. E.
,
2005
, “
Modeling the Effect of Non-Penetrating Ballistic Impact as a Means of Detecting Behind Armor Blunt Trauma
,”
J. Trauma
,
58
(
6
), pp.
1241
1251
.10.1097/01.TA.0000169805.81214.DC
16.
Roberts
,
J. C.
,
Ward
,
E. E.
,
Merkle
,
A. C.
, and
O'Connor
,
J. V.
,
2007
, “
Assessing Behind Armor Blunt Trauma in Accordance With the National Institute of Justice Standard for Personal Body Armor Protection Using Finite Element Modeling
,”
J. Trauma
,
62
(
5
), pp.
1127
1133
.10.1097/01.ta.0000231779.99416.ee
17.
Roberts
,
J. C.
,
Merkle
,
A. C.
,
Biermann
,
P. J.
,
Ward
,
E. E.
,
Carkhuff
,
B. G.
,
Cain
,
R. P.
, and
O'Connor
,
J. V.
,
2007
, “
Computational and Experimental Models of the Human Torso for Non-Penetrating Ballistic Impact
,”
J. Biomech.
,
40
(
1
), pp.
125
136
.10.1016/j.jbiomech.2005.11.003
18.
Merkle
,
A. C.
,
Ward
,
E. E.
,
O'Connor
,
J. V.
, and
Roberts
,
J. C.
,
2008
, “
Assessing Behind Armor Blunt Trauma (BABT) Under NIJ Standard-0101.04 Conditions Using Human Torso Models
,”
J. Trauma
,
64
(
6
), pp.
1555
1561
.10.1097/TA.0b013e318160ff3a
19.
Raftenberg
,
M. N.
,
2006
, “
Modeling Thoracic Blunt Trauma: Towards a Finite-Element-Based Design Methodology for Body Armor
,”
Transformational Science and Technology for the Current and Future Force
, World Scientific, Orlando, FL, Nov. 29–Dec. 2, pp.
219
226
.https://apps.dtic.mil/sti/citations/ADA433234
20.
Shen
,
W.
,
Niu
,
Y.
,
Bykanova
,
L.
,
Laurence
,
P.
, and
Link
,
N.
,
2010
, “
Characterizing the Interaction Among Bullet, Body Armor, and Human and Surrogate Targets
,”
ASME J. Biomech. Eng.
,
132
(
12
), p.
121001
.10.1115/1.4002699
21.
Cronin
,
D. S.
,
2015
, “
Investigation of Lung Response Resulting From Behind Armour Blunt Trauma Impact Scenarios
,”
Proceedings of the International Research Council on Biomechanics of Injury
, International Research Council on Biomechanics of Injury, Lyon, France, Sept. 9–11, pp.
722
723
.http://www.ircobi.org/wordpress/downloads/irc15/pdf_files/78.pdf
22.
Viano
,
D. C.
,
1989
, “
Biomechanical Responses and Injuries in Blunt Lateral Impact
,”
SAE Trans. J. Mater. Manuf.
,
98
(
6
), pp.
1690
1719
.http://www.jstor.org/stable/44472411
23.
Miller
,
P. R.
,
Croce
,
M. A.
,
Bee
,
T. K.
,
Qaisi
,
W. G.
,
Smith
,
C. P.
,
Collins
,
G. L.
, and
Fabian
,
T. C.
,
2001
, “
ARDS After Pulmonary Contusion: Accurate Measurement of Contusion Volume Identifies High-Risk Patients
,”
J. Trauma
,
51
(
2
), p.
223
.10.1097/00005373-200108000-00003
24.
Becher
,
R. D.
,
Colonna
,
A. L.
,
Enniss
,
T. M.
,
Weaver
,
A. A.
,
Crane
,
D. K.
,
Martin
,
R. S.
,
Mowery
,
N. T.
,
Miller
,
P. R.
,
Stitzel
,
J. D.
, and
Hoth
,
J. J.
,
2012
, “
An Innovative Approach to Predict the Development of Adult Respiratory Distress Syndrome in Patients With Blunt Trauma
,”
J. Trauma Acute Care Surg.
,
73
(
5
), pp.
1229
1235
.10.1097/TA.0b013e31825b2124
25.
Metker
,
L. W.
,
Prather
,
R. N.
, and
Johnson
,
E. M.
,
1975
, “
A Method for Determining Backface Signatures of Soft Body Armors
,” Edgewood Arsenal Aberdeen Proving Ground MD, Rockville, MD, Report No.
34850
.https://apps.dtic.mil/sti/citations/ADA012797
26.
Prather
,
R. N.
,
Metker
,
L. W.
, and
Ground
,
E. A. A.
,
1976
, “
Ballistic Test Matrix for Kevlar Material
,” Edgewood Arsenal Aberdeen Proving Ground MD, Fort Belvoir, VA, Report No.
ADA029006
.https://apps.dtic.mil/sti/citations/ADA029006
27.
Wilhelm
,
M. R.
,
2003
, “
A Biomechanical Assessment of Female Body Armor
,”
Ph.D. dissertation
,
Wayne State University
, Detroit, MI.https://www.researchgate.net/publication/254725596_A_biomechanical_assessment_of_female_body_armor
28.
Choudhury
,
S.
,
Yerramalli
,
C. S.
,
Guha
,
A.
, and
Ingle
,
S.
,
2022
, “
Prediction and Mitigation of Behind Armor Blunt Trauma in Composite Plate Armor Using Rubber Backing or Air Gaps
,”
Eur. J. Mech.
,
93
, p.
104533
.10.1016/j.euromechsol.2022.104533
29.
Tilsley
,
L.
,
Carr
,
D. J.
,
Lankester
,
C.
, and
Malbon
,
C.
,
2018
, “
Do Air-Gaps Behind Soft Body Armour Affect Protection?
,”
J. R. Army Med. Corps
,
164
(
1
), pp.
15
18
.10.1136/jramc-2016-000759
30.
International Organization for Standardization
,
2014
, “
Procedure to Construct Injury Risk Curves for the Evaluation of Road User Protection in Crash Tests
,” International Organization for Standardization (ISO), Geneva, Switzerland, Standard No.
ISO/TS 18506
.https://www.iso.org/standard/62696.html#:~:text=It%20recommends%20preliminary%20checks%2C%20statistical,ISO%2FTS%2018506%3A2014
31.
Nahm
,
F. S.
,
2022
, “
Receiver Operating Characteristic Curve: Overview and Practical Use for Clinicians
,”
Korean J. Anesthesiol.
,
75
(
1
), pp.
25
36
.10.4097/kja.21209
You do not currently have access to this content.